174 resultados para equine laminitis
Resumo:
In the first part of this methodological study eleven metacarpi of 9 skeletally normal horses were examined from 4 directions by dual energy x-ray absorptiometry (DXA). The differences between the dorsopalmar-palmarodorsal and lateromedial-mediolateral (opposite sites) bone mineral density (BMD) values were found to be nonsignificant. In the second part of the study the precision of the Norland XR-26 densitometer was tested by measuring 34 metacarpal bones and 34 proximal phalanges, each of them three times, from a single direction. The difference between the individual measurements of the first phalanges and of the metacarpal bones originating from the right or the left side of the same horse were not significant, nor did the age or breed have a significant effect on BMD or bone mineral content (BMC). However, both BMD and BMC are greater in the metacarpal bones than in the proximal phalanges and are higher in geldings than in mares or to stallions, while the BMD or BMC values of mares and stallions did not differ from each other significantly. These data point to the necessity of further BMD studies in a higher number of patients.
Resumo:
In this study, we present a comprehensive 5000-rad radiation hybrid map of a 40-cM region on equine chromosome 4 (ECA4) that contains quantitative trait loci for equine osteochondrosis. We mapped 29 gene-associated sequence tagged site markers using primers designed from equine expressed sequence tags or BAC clones in the ECA4q12-q22 region. Three blocks of conserved synteny, showing two chromosomal breakpoints, were identified in the segment of ECA4q12-q22. Markers from other segments of HSA7q mapped to ECA13p and ECA4p, and a region of HSA7p was homologous to ECA13p. Therefore, we have improved the resolution of the human-equine comparative map, which allows the identification of candidate genes underlying traits of interest.
Resumo:
In an effort to increase the density of sequence-based markers for the horse genome we generated 9473 BAC end sequences (BESs) from the CHORI-241 BAC library with an average read length of 677 bp. BLASTN searches with the BESs revealed 4036 meaningful hits (E
Resumo:
The mammalian collagen, type IX, alpha 2 gene (COL9A2) encodes the alpha-2 chain of type IX collagen and is located on horse chromosome 2p16-->p14 harbouring a quantitative trait locus for osteochondrosis. We isolated a bacterial artificial chromosome (BAC) clone containing the equine COL9A2 gene and determined the complete genomic sequence of this gene. Cloning and characterization of equine COL9A2 revealed that the equine gene consists of 32 exons spanning approximately 15 kb. The COL9A2 transcript encodes a single protein of 688 amino acids. Thirty two single nucleotide polymorphisms (SNPs) equally distributed in the gene were detected in a mutation scan of eight unrelated Hanoverian warmblood stallions, including one SNP that affects the amino acid sequence of COL9A2. Comparative analyses between horse, human, mouse and rat indicate that the chromosomal location of equine COL9A2 is in agreement with known chromosomal synteny relationships. The comparison of the gene structure and transcript revealed a high degree of conservation towards the other mammalian COL9A2 genes. We chose three informative SNPs for association and linkage disequilibrium tests in three to five paternal half-sib families of Hanoverian warmblood horses consisting of 44 to 75 genotyped animals. The test statistics did not reach the significance threshold of 5% and so we could not show an association of COL9A2 with equine osteochondrosis.
Resumo:
Piroplasmosis has been identified as a possible cause of mortality in reintroduced Przewalski's horses (Equus ferus przewalskii) in the Dsungarian Gobi (Mongolia). A cross-sectional and a longitudinal study were conducted in a representative sample (n = 141) of the resident domestic horse population and in 23 Przewalski's horses to assess the prevalence of Theileria equi and Babesia caballi. Piroplasms were detected in blood by light microscopy in 6.7% (95% confidence interval [CI]: 3.6-12.2%) of the domestic horse samples. Antibody prevalence was 88.6% (95% CI: 82.4-92.9%) for T. equi and 75.2% (95% CI: 67.4-81.6%) for B. caballi. Antibody prevalence did not change over time, but antibody prevalence for both piroplasms were significantly lower in animals less than 1 yr of age. For both piroplasms, the prevalence of presumably maternal antibodies (falling titers) in foals was 100%. Only one of 16 foals seroconverted against T. equi during the study period, despite that piroplasms were found in two other individuals. The incidence density (ID) of T. equi in foals was therefore 0.0012 seroconversions per horse day (95% CI: 0.00029-0.0057). In contrast, yearlings had an ID of 0.0080 (95% CI: 0.0049-0.010) for T. equi and 0.0064 (95% CI: 0.0036-0.0093) for B. caballi, and in seven individuals piroplasms were detected. The seroprevalence of both piroplasms rose from 20% in spring to 100% in autumn. Comparison of domestic and Przewalski's horses resulted in a standardized prevalence ratio (SPR) of 0.98 (95% CI: 0.80-1.24, not significant) for B. caballi; in contrast, the prevalence of T. equi in Przewalski's horses was significantly lower than expected (SPR = 0.51, 95% CI: 0.50-0.64).
Resumo:
Bone scintigraphy is a very sensitive diagnostic tool to detect elevated bone metabolism. In cases of fractures and fissure fractures, the radiopharmaceutical uptake in the bone is said to be increased within a few hours after the injury. In this retrospective study, the scintigraphic uptake characteristics at the fracture site of 36 horses with radiographically confirmed fractures or fissure fractures were evaluated. Uptake ratios between the fracture region and adjacent normal bone or soft tissue activity respectively were calculated and compared to different anamnestic and radiographic data. The overall sensitivity of bone scintigraphy was 94.4% (34 positive cases out of 36). In the 36 horses, no correlation between the age of the fracture and the radiopharmaceutical uptake was found. However, there seems to be a lack of sensitivity in early detection of equine pelvic fractures when a standing bone scintigraphy examination protocol is used.
Resumo:
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by IgE-mediated reactions to bites of Culicoides and sometimes Simulium spp. The allergens causing IBH are probably salivary gland proteins from these insects, but they have not yet been identified. The aim of our study was to identify the number and molecular weight of salivary gland extract (SGE) proteins derived from Culicoides nubeculosus which are able to bind IgE antibodies (ab) from the sera of IBH-affected horses. Additionally, we sought to investigate the IgG subclass (IgGa, IgGb and IgGT) reactivity to these proteins. Individual IgE and IgG subclass responses to proteins of C. nubeculosus SGE were evaluated by immunoblot in 42 IBH-affected and 26 healthy horses belonging to different groups (Icelandic horses born in Iceland, Icelandic horses and horses from different breeds born in mainland Europe). Additionally, the specific antibody response was studied before exposure to bites of Culicoides spp. and over a period of 3 years in a cohort of 10 Icelandic horses born in Iceland and imported to Switzerland. Ten IgE-binding protein bands with approximate molecular weights of 75, 66, 52, 48, 47, 32, 22/21, 19, 15, 13/12 kDa were found in the SGE. Five of these bands bound IgE from 50% or more of the horse sera. Thirty-nine of the 42 IBH-affected horses but only 2 of the 26 healthy horses showed IgE-binding to the SGE (p<0.000001). Similarly, more IBH-affected than healthy horses had IgGa ab binding to the Culicoides SGE (19/22 and 9/22, respectively, p<0.01). Sera of IBH-affected horses contained IgE, IgGa and IgGT but not IgGb ab against significantly more protein bands than the sera of the healthy horses. The cohort of 10 Icelandic horses confirmed these results and showed that Culicoides SGE specific IgE correlates with onset of IBH. IBH-affected horses that were born in Iceland had IgGa and IgGT ab (p< or =0.01) as well as IgE ab (p=0.06) against a significantly higher number of SGE proteins than IBH-affected horses born in mainland Europe. The present study shows that Culicoides SGE contains at least 10 potential allergens for IBH and that IBH-affected horses show a large variety of IgE-binding patterns in immunoblots. These findings are important for the future development of a specific immunotherapy with recombinant salivary gland allergens.
Resumo:
In Switzerland, the incidence of equine botulism and acute pasture myodystrophy have remarkably increased in the last five years. Equine fodder-borne botulism in Europe is most likely caused by Clostridium botulinum types C and D that produce the toxins BoNT/C and BoNT/D. Horses showing signs suggestive of botulism (muscle weakness and tremors, reduced tongue tone, slow chewing, salivation and difficulties swallowing, drooping eyelids, mydriasis), especially patients that have fed on suspect fodder (mostly haylage), must be treated with anti-serum as soon as possible.They also need intensive care, which is often difficult to provide and always expensive in the face of a guarded to poor prognosis. Therefore, prevention (high standards of forage quality and vaccination) is all the more important. Pasture myodystrophy is an acute disease with signs of rhabdomyolysis and lethality rate over 90%. It affects grazing horses under frosty, windy and rainy conditions. Preliminary results indicate that Clostridium sordellii and Clostridium bifermentans producing lethal toxin may play a role in pasture myodystrophy. Our efforts concentrate on developing a new subunit vaccine for equine botulism and understanding the ethiology and pathogenesis of pasture myodystrophy with the goal of improving prevention against these highly fatal diseases that present a significant risk to our horse population.
Resumo:
Fibroblast-like cells isolated from peripheral blood of human, canine, guinea pig, and rat have been demonstrated to possess the capacity to differentiate into several mesenchymal lineages. The aim of this work was to investigate the possibility of isolating pluripotent precursor cells from equine peripheral blood and compare them with equine bone marrow-derived mesenchymal stem cells. Human mesenchymal stem cells (MSCs) were used as a control for cell multipotency assessment. Venous blood (n = 33) and bone marrow (n = 5) were obtained from adult horses. Mononuclear cells were obtained by Ficoll gradient centrifugation and cultured in monolayer, and adherent fibroblast-like cells were tested for their differentiation potential. Chondrogenic differentiation was performed in serum-free medium in pellet cultures as a three-dimensional model, whereas osteogenic and adipogenic differentiation were induced in monolayer culture. Evidence for differentiation was made via biochemical, histological, and reverse transcription-polymerase chain reaction evaluations. Fibroblast-like cells were observed on day 10 in 12 out of 33 samples and were allowed to proliferate until confluence. Equine peripheral blood-derived cells had osteogenic and adipogenic differentiation capacities comparable to cells derived from bone marrow. Both cell types showed a limited capacity to produce lipid droplets compared to human MSCs. This result may be due to the assay conditions, which are established for human MSCs from bone marrow and may not be optimal for equine progenitor cells. Bone marrow-derived equine and human MSCs could be induced to develop cartilage, whereas equine peripheral blood progenitors did not show any capacity to produce cartilage at the histological level. In conclusion, equine peripheral blood-derived fibroblast-like cells can differentiate into distinct mesenchymal lineages but have less multipotency than bone marrow-derived MSCs under the conditions used in this study.
Resumo:
Immunoglobulin E forms a minor component of serum antibody in mammals. In tissues IgE is bound by FcvarepsilonRI receptors on the surface of mast cells and mediates their release of inflammatory substances in response to antigen. IgE and mast cells have a central role in immunity to parasites and the pathogenesis of allergic diseases in horses and other mammals. This paper describes the production of several novel monoclonal antibodies that detect native equine IgE in immunohistology, ELISA and Western blotting. An antigen capture ELISA to quantify equine IgE in serum has been developed using two of these antibodies. The mean serum IgE concentration of a group of 122 adult horses was 23,523ng/ml with a range of 425-82,610ng/ml. Total serum IgE of healthy horses was compared with that of horses with insect bite dermal hypersensitivity (IBDH) an allergic reaction to the bites of blood feeding insects of Culicoides or Simulium spp. IBDH does not occur in Iceland where Culicoides spp. are absent, but following importation into mainland Europe native Icelandic horses have an exceptionally high incidence of this condition. In the present study Icelandic horses with IBDH had significantly higher total IgE than healthy Icelandic horse controls (P<0.05). By contrast in horses of other breeds the difference in total serum IgE between those affected with IBDH and healthy controls was not statistically significant. Total serum IgE was also monitored in a cohort of Icelandic horses prior to import into Switzerland and for a period of 3 years thereafter. High levels of serum IgE were present in all horses at the start of the study but dropped in the first year after import. Thereafter the total serum IgE remained low in Icelandic horses that remained healthy but rose significantly (P<0.05) in those that developed IBDH. These results support the conclusion that IBDH is a type I hypersensitivity response to insect allergens but indicate that IBDH in Icelandic horses may have a different pathogenesis from the same condition in other breeds.
Resumo:
A robust CE method for the simultaneous determination of the enantiomers of ketamine and norketamine in equine plasma is described. It is based upon liquid-liquid extraction of ketamine and norketamine at alkaline pH from 1 mL plasma followed by analysis of the reconstituted extract by CE in the presence of a pH 2.5 Tris-phosphate buffer containing 10 mg/mL highly sulfated beta-CD as chiral selector. Enantiomer plasma levels between 0.04 and 2.5 microg/mL are shown to provide linear calibration graphs. Intraday and interday precisions evaluated from peak area ratios (n = 5) at the lowest calibrator concentration are < 8 and < 14%, respectively. The LOD for all enantiomers is 0.01 microg/mL. After i.v. bolus administration of 2.2 mg/kg racemic ketamine, the assay is demonstrated to provide reliable data for plasma samples of ponies under isoflurane anesthesia, of ponies premedicated with xylazine, and of one horse that received romifidine, L-methadone, guaifenisine, and isoflurane. In animals not premedicated with xylazine, the ketamine N-demethylation is demonstrated to be enantioselective. The concentrations of the two ketamine enantiomers in plasma are equal whereas S-norketamine is found in a larger amount than R-norketamine. In the group receiving xylazine, data obtained do not reveal this stereoselectivity.