38 resultados para epiphysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND In some hips with cam-type femoroacetabular impingement (FAI), we observed a morphology resembling a more subtle form of slipped capital femoral epiphysis (SCFE). Theoretically, the morphology in these hips should differ from hips with a primary cam-type deformity. QUESTIONS/PURPOSES We asked if (1) head-neck offset; (2) epiphyseal angle; and (3) tilt angle differ among hips with a slip-like morphology, idiopathic cam, hips after in situ pinning of SCFE, and normal hips; and (4) what is the prevalence of a slip-like morphology among cam-type hips? METHODS We retrospectively compared the three-dimensional anatomy of hips with a slip-like morphology (29 hips), in situ pinning for SCFE (eight hips), idiopathic cam deformity (171 hips), and 30 normal hips using radial MRI arthrography. Normal hips were derived from 17 asymptomatic volunteers. All other hips were recruited from a series of 277 hips (243 patients) seen at a specialized academic hip center between 2006 and 2010. Forty-one hips with isolated pincer deformity were excluded. Thirty-six of 236 hips had a known cause of cam impingement (secondary cam), including eight hips after in situ pinning of SCFE (postslip group). The 200 hips with a primary cam were separated in hips with a slip-like morphology (combination of positive fovea sign [if the neck axis did not intersect with the fovea capitis] and a tilt angle [between the neck axis and perpendicular to the basis of the epiphysis] exceeding 4°) and hips with an idiopathic cam. We evaluated offset ratio, epiphyseal angle (angle between the neck axis and line connecting the center of the femoral head and the point where the physis meets the articular surface), and tilt angle circumferentially around the femoral head-neck axis. Prevalence of slip-like morphology was determined based on the total of 236 hips with cam deformities. RESULTS Offset ratio was decreased anterosuperiorly in idiopathic cam, slip-like, and postslip (eg, 1 o'clock position with a mean offset ranging from 0.00 to 0.14; p < 0.001 for all groups) compared with normal hips (0.25 ± 0.06 [95% confidence interval, 0.13-0.37]) and increased posteroinferiorly in slip-like (eg, 8 o'clock position, 0.5 ± 0.09 [0.32-0.68]; p < 0.001) and postslip groups (0.55 ± 0.12 [0.32-0.78]; p < 0.001) and did not differ in idiopathic cam (0.32 ± 0.09 [0.15-0.49]; p = 0.323) compared with normal (0.31 ± 0.07 [0.18-0.44]) groups. Epiphyseal angle was increased anterosuperiorly in the slip-like (eg, 1 o'clock position, 70° ± 9° [51°-88°]; p < 0.001) and postslip groups (75° ± 13° [49°-100°]; p = 0.008) and decreased in idiopathic cam (50° ± 8° [35°-65°]; p < 0.001) compared with normal hips (58° ± 8° [43°-74°]). Posteroinferiorly, epiphyseal angle was decreased in slip-like (eg, 8 o'clock position, 54° ± 10° [34°-74°]; p < 0.001) and postslip (44° ± 11° [23°-65°]; p < 0.001) groups and did not differ in idiopathic cam (76° ± 8° [61°-91°]; p = 0.099) compared with normal (73° ± 7° [59°-88°]) groups. Tilt angle increased in slip-like (eg, 2/8 o'clock position, 14° ± 8° [-1° to 30°]; p < 0.001) and postslip hips (29° ± 10° [9°-48°]; p < 0.001) and decreased in hips with idiopathic cam (-7° ± 5° [-17° to 4°]; p < 0.001) compared with normal (-1° ± 5° [-10° to 8°]) hips. The prevalence of a slip-like morphology was 12%. CONCLUSIONS The slip-like morphology is the second most frequent pathomorphology in hips with primary cam deformity. MRI arthrography of the hip allows identifying a slip-like morphology, which resembles hips after in situ pinning of SCFE and distinctly differs from hips with idiopathic cam. These results support previous studies reporting that SCFE might be a risk factor for cam-type FAI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is emerging evidence that even mild slipped capital femoral epiphysis leads to early articular damage. Therefore, we have begun treating patients with mild slips and signs of impingement with in situ pinning and immediate arthroscopic osteoplasty. DESCRIPTION OF TECHNIQUES: Surgery was performed using the fracture table. After in situ pinning and diagnostic arthroscopy, peripheral compartment access was obtained and head-neck osteoplasty was completed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction The objective of this study was to assess three-dimensional bone geometry and density at the epiphysis and shaft of the third meta-carpal bone of rheumatoid arthritis (RA) patients in comparison to healthy controls with the novel method of peripheral quantitative computed tomography (pQCT). Methods PQCT scans were performed in 50 female RA patients and 100 healthy female controls at the distal epiphyses and shafts of the third metacarpal bone, the radius and the tibia. Reproducibility was determined by coefficient of varia-tion. Bone densitometric and geometric parameters were compared between the two groups and correlated to disease characteristics. Results Reproducibility of different pQCT parameters was between 0.7% and 2.5%. RA patients had 12% to 19% lower trabecular bone mineral density (BMD) (P ≤ 0.001) at the distal epiphyses of radius, tibia and metacarpal bone. At the shafts of these bones RA patients had 7% to 16% thinner cortices (P ≤ 0.03). Total cross-sectional area (CSA) at the metacarpal bone shaft of pa-tients was larger (between 5% and 7%, P < 0.02), and relative cortical area was reduced by 13%. Erosiveness by Ratingen score correlated negatively with tra-becular and total BMD at the epiphyses and shaft cortical thickness of all measured bones (P < 0.04). Conclusions Reduced trabecular BMD and thinner cortices at peripheral bones, and a greater bone shaft diameter at the metacarpal bone suggest RA spe-cific bone alterations. The proposed pQCT protocol is reliable and allows measuring juxta-articular trabecular BMD and shaft geometry at the metacarpal bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrilins are oligomeric extracellular matrix adaptor proteins mediating interactions between collagen fibrils and other matrix constituents. All four matrilins are expressed in cartilage and mutations in the human gene encoding matrilin-3 (MATN3) are associated with different forms of chondrodysplasia. Surprisingly, however, Matn3-null as well as Matn1- and Matn2-null mice do not show an overt skeletal phenotype, suggesting a dominant negative pathomechanism for the human disorders and redundancy/compensation among the family members in the knock-out situation. Here, we show that mice lacking both matrilin-1 and matrilin-3 develop an apparently normal skeleton, but exhibit biochemical and ultrastructural abnormalities of the knee joint cartilage. At the protein level, an altered SDS-PAGE band pattern and a clear up-regulation of the homotrimeric form of matrilin-4 were evident in newborn Matn1/Matn3 and Matn1 knock-out mice, but not in Matn3-null mice. The ultrastructure of the cartilage matrix after conventional chemical fixation was grossly normal; however, electron microscopy of high pressure frozen and freeze-substituted samples, revealed two consistent observations: 1) moderately increased collagen fibril diameters throughout the epiphysis and the growth plate in both single and double mutants; and 2) increased collagen volume density in Matn1(-/-)/Matn3(-/-) and Matn3(-/-) mice. Taken together, our results demonstrate that matrilin-1 and matrilin-3 modulate collagen fibrillogenesis in cartilage and provide evidence that biochemical compensation might exist between matrilins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural deformities of the femoral head occurring during skeletal development (eg, Legg-Calvé-Perthes disease) are associated with individual shapes of the acetabulum but it is unclear whether differences in acetabular shape are associated with differences in proximal femoral shape. We questioned whether the amount of acetabular coverage influences femoral morphology. We retrospectively compared the proximal femoral anatomy of 50 selected patients (50 hips) with developmental dysplasia of the hip (lateral center-edge angle [LCE] < or = 25 degrees ; acetabular index > or = 14 degrees ) with 45 selected patients (50 hips) with a deep acetabulum (LCE > or = 39 degrees ). Using MRI arthrography we measured head sphericity, epiphyseal shape, epiphyseal extension, and femoral head-neck offset. A deep acetabulum was associated with a more spherical head shape, increased epiphyseal height with a pronounced extension of the epiphysis towards the femoral neck, and an increased offset. In contrast, dysplastic hips showed an elliptical femoral head, decreased epiphyseal height with a less pronounced extension of the epiphysis, and decreased head-neck offset. Hips with different acetabular coverage are associated with different proximal femoral anatomy. A nonspherical head in dysplastic hips could lead to joint incongruity after an acetabular reorientation procedure. LEVEL OF EVIDENCE: Level IV, retrospective comparative study. See the Guidelines for Authors for a complete description of levels of evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinal cord injury (SCI) leads to severe bone loss in the paralysed limbs and to a resulting increased fracture risk thereof. Since long bone fractures can lead to comorbidities and a reduction in quality of life, it is important to improve bone strength in people with chronic SCI. In this prospective longitudinal cohort study, we investigated whether functional electrical stimulation (FES) induced high-volume cycle training can partially reverse the loss of bone substance in the legs after chronic complete SCI. Eleven participants with motor-sensory complete SCI (mean age 41.9+/-7.5 years; 11.0+/-7.1 years post injury) were recruited. After an initial phase of 14+/-7 weeks of FES muscle conditioning, participants performed on average 3.7+/-0.6 FES-cycling sessions per week, of 58+/-5 min each, over 12 months at each individual's highest power output. Bone and muscle parameters were investigated in the legs by means of peripheral quantitative computed tomography before the muscle conditioning (t1), and after six (t2) and 12 months (t3) of high-volume FES-cycle training. After 12 months of FES-cycling, trabecular and total bone mineral density (BMD) as well as total cross-sectional area in the distal femoral epiphysis increased significantly by 14.4+/-21.1%, 7.0+/-10.8% and 1.2+/-1.5%, respectively. Bone parameters in the femoral shaft showed small but significant decreases, with a reduction of 0.4+/-0.4% in cortical BMD, 1.8+/-3.0% in bone mineral content, and 1.5+/-2.1% in cortical thickness. These decreases mainly occurred between t1 and t2. No significant changes were found in any of the measured bone parameters in the tibia. Muscle CSA at the thigh increased significantly by 35.5+/-18.3%, while fat CSA at the shank decreased by 16.7+/-12.3%. Our results indicate that high-volume FES-cycle training leads to site-specific skeletal changes in the paralysed limbs, with an increase in bone parameters at the actively loaded distal femur but not the passively loaded tibia. Thus, we conclude that high-volume FES-induced cycle training has clinical relevance as it can partially reverse bone loss and thus may reduce fracture risk at this fracture prone site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a randomly selected cohort of Swiss community-dwelling elderly women prospectively followed up for 2.8 +/- 0.6 years, clinical fractures were assessed twice yearly. Bone mineral density (BMD) measured at tibial diaphysis (T-DIA) and tibial epiphysis (T-EPI) using dual-energy X-ray absorptiometry (DXA) was shown to be a valid alternative to lumbar spine or hip BMD in predicting fractures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteotomies of the proximal femur for hip joint conditions are normally done at the intertrochanteric or subtrochanteric level. Intra-articular osteotomies would be more direct and therefore allow a more powerful correction with no or very little undesired side correction. However, concerns about the risk of vascular damage and osteonecrosis of the femoral head have so far basically excluded this technique from practical use. Based on detailed knowledge of the vascular anatomy of the proximal femur, an approach to safely dislocate the femoral head has been described and successfully performed. Experience as well as further studies of femoral head perfusion allowed a substantial extension of this approach, with subperiosteal exposure of the circumference of the femoral neck with constant intraoperative control of the blood supply to the head. Using the extended retinacular soft-tissue flap, four surgical techniques (relative neck lengthening, subcapital realignment in slipped capital femoral epiphysis, true femoral neck osteotomy, and femoral head reduction osteotomy) evolved or became safer with respect to perfusion of the femoral head. The extended retinacular soft-tissue flap offers the technical and biologic possibility for a new class of intra articular procedures. Although meticulous execution of the surgical steps is important, the procedures have a high level of safety for femoral head perfusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blood perfusion to the femoral head might be endangered during the surgical approach or the preparation of the femoral head or both in hip resurfacing arthroplasty. The contribution of the intramedullary blood supply to the femoral head in osteoarthritis is questionable. Therefore, the contribution of the extraosseous blood supply to osteoarthritic femoral heads was measured intraoperatively to question if there is measurable blood flow between the epiphysis and metaphysis in osteoarthritic hips in case of extraosseus vessel damage. At defined points during surgery we acquired the epiphyseal and metaphyseal femoral head perfusion by high-energy laser Doppler flowmetry. Complete femoral neck osteotomy sparing the retinacular vessels to simulate intraosseous blood disruption showed unchanged epiphyseal blood flow compared to initial measurement after capsulotomy. The pulsatile signal disappeared after transection of the retinacular vessels. Based on these acute measurements, we conclude intramedullary blood vessels to the femoral head do not provide measurable blood supply to the epiphysis once the medial femoral circumflex artery or the retinacular vessels have been damaged. We recommend the use of a safe surgical approach for hip resurfacing and careful implantation of the femoral component to respect blood supply to the femoral head and neck region in hip resurfacing arthroplasty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moderate to severe slipped capital femoral epiphysis leads to premature osteoarthritis resulting from femoroacetabular impingement. We believe surgical correction at the site of deformity through capital reorientation is the best procedure to fully correct the deformity but has traditionally been associated with high rates of osteonecrosis. We describe a modified capital reorientation procedure performed through a surgical dislocation approach. We followed 40 patients for a minimum of 1 year and 3 years from two institutions. No patient developed osteonecrosis or chondrolysis. Slip angle was corrected to 4 degrees to 8 degrees and the mean alpha angle after correction was 40.6 degrees. Articular cartilage damage, full-thickness loss, and delamination were observed at the time of surgery, especially in the stable slips. This technique appears to have an acceptable complication rate and appears reproducible for full correction of moderate to severe slipped capital femoral epiphyses with open physes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess the effects of long-term treatment of bone loss with alendronate in a group of paraplegic men, 55 patients were evaluated in a prospective randomized controlled open label study that was 2 years in duration comparing alendronate and calcium with calcium alone. Bone loss was stopped at all cortical and trabecular infralesional sites (distal tibial epiphysis, tibial diaphysis, total hip) with alendronate 10 mg daily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the time course of demineralization and fracture incidence after spinal cord injury (SCI), 100 paraplegic men with complete motor loss were investigated in a cross-sectional study 3 months to 30 years after their traumatic SCI. Fracture history was assessed and verified using patients' files and X-rays. BMD of the lumbar spine (LS), femoral neck (FN), distal forearm (ultradistal part = UDR, 1/3 distal part = 1/3R), distal tibial diaphysis (TDIA), and distal tibial epiphysis (TEPI) was measured using DXA. Stiffness of the calcaneus (QUI.CALC), speed of sound of the tibia (SOS.TIB), and amplitude-dependent SOS across the proximal phalanges (adSOS.PHAL) were measured using QUS. Z-Scores of BMD and quantitative ultrasound (QUS) were plotted against time-since-injury and compared among four groups of paraplegics stratified according to time-since-injury (<1 year, stratum I; 1-9 years, stratum II; 10-19 years, stratum III; 20-29 years, stratum IV). Biochemical markers of bone turnover (deoxypyridinoline/creatinine (D-pyr/Cr), osteocalcin, alkaline phosphatase) and the main parameters of calcium phosphate metabolism were measured. Fifteen out of 98 paraplegics had sustained a total of 39 fragility fractures within 1,010 years of observation. All recorded fractures were fractures of the lower limbs, mean time to first fracture being 8.9 +/- 1.4 years. Fracture incidence increased with time-after-SCI, from 1% in the first 12 months to 4.6%/year in paraplegics since >20 years ( p<.01). The overall fracture incidence was 2.2%/year. Compared with nonfractured paraplegics, those with a fracture history had been injured for a longer time ( p<.01). Furthermore, they had lower Z-scores at FN, TEPI, and TDIA ( p<.01 to <.0001), the largest difference being observed at TDIA, compared with the nonfractured. At the lower limbs, BMD decreased with time at all sites ( r=.49 to.78, all p<.0001). At FN and TEPI, bone loss followed a log curve which leveled off between 1 to 3 years after injury. In contrast, Z-scores of TDIA continuously decreased even beyond 10 years after injury. LS BMD Z-score increased with time-since-SCI ( p<.05). Similarly to DXA, QUS allowed differentiation of early and rapid trabecular bone loss (QUI.CALC) vs slow and continuous cortical bone loss (SOS.TIB). Biochemical markers reflected a disproportion between highly elevated bone resorption and almost normal bone formation early after injury. Turnover declined following a log curve with time-after-SCI, however, D-pyr/Cr remained elevated in 30% of paraplegics injured >10 years. In paraplegic men early (trabecular) and persistent (cortical) bone loss occurs at the lower limbs and leads to an increasing fracture incidence with time-after-SCI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess bone mineral density (BMD) at different skeletal sites in women with hypothalamic or ovarian amenorrhea and the effect of estrogen-gestagen substitution on BMD we compared BMD of 21 amenorrheic patients with hypothalamic or ovarian amenorrhea with that of a control population of 123 healthy women. All amenorrheic patients were recruited from the outpatient clinic of the Division of Gynecological Endocrinology at the University of Berne, a public University Hospital. One hundred and twenty-three healthy, regularly menstruating women recruited in the Berne area served as a control group. BMD was measured using dual-energy X-ray absorptiometry (DXA). At each site where it was measured, mean BMD was lower in the amenorrheic group than in the control group. Compared with the control group, average BMD in the amenorrheic group was 85% at lumbar spine (p < 0.0001), 92% at femoral neck (p < 0.02), 90% at Ward's triangle (p < 0.03), 92% at tibial diaphysis (p < 0.0001) and 92% at tibial epiphysis (p < 0.03). Fifteen amenorrheic women received estrogen-gestagen replacement therapy (0.03 mg ethinylestradiol and 0.15 mg desogestrel daily for 21 days per month), bone densitometry being repeated within 12-24 months. An annual increase in BMD of 0.2% to 2.9% was noted at all measured sites, the level of significance being reached at the lumbar spine (p < 0.0012) and Ward's triangle (p < 0.033). In conclusion BMD is lower in amenorrheic young women than in a population of normally menstruating, age-matched women in both mainly trabecular (lumbar spine, Ward's triangle, tibial epiphysis) and mainly cortical bone (femoral neck, tibial diaphysis).(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to explore the effect of long-term cross-sex hormonal treatment on cortical and trabecular bone mineral density and main biochemical parameters of bone metabolism in transsexuals. Twenty-four male-to-female (M-F) transsexuals and 15 female-to-male (F-M) transsexuals treated with either an antiandrogen in combination with an estrogen or parenteral testosterone were included in this cross-sectional study. BMD was measured by DXA at distal tibial diaphysis (TDIA) and epiphysis (TEPI), lumbar spine (LS), total hip (HIP) and subregions, and whole body (WB) and Z-scores determined for both the genetic and the phenotypic gender. Biochemical parameters of bone turnover, insulin-like growth factor-1 (IGF-1) and sex hormone levels were measured in all patients. M-F transsexuals were significantly older, taller and heavier than F-M transsexuals. They were treated by cross-sex hormones during a median of 12.5 years before inclusion. As compared with female age-matched controls, they showed a significantly higher median Z-score at TDIA and WB (1.7+/-1.0 and 1.8+/-1.1, P < 0.01) only. Based on the WHO definition, five (who did not comply with cross-sex hormone therapy) had osteoporosis. F-M transsexuals were treated by cross-sex hormones during a median of 7.6 years. They had significantly higher median Z-scores at TEPI, TDIA and WB compared with female age-matched controls (+0.9+/-0.2 SD, +1.0+/-0.4 SD and +1.4+/-0.3 SD, respectively, P < 0.0001 for all) and reached normal male levels except at TEPI. They had significantly higher testosterone and IGF-1 levels (p < 0.001) than M-F transsexuals. We conclude that in M-F transsexuals, BMD is preserved over a median of 12.5 years under antiandrogen and estrogen combination therapy, while in F-M transsexuals BMD is preserved or, at sites rich in cortical bone, is increased to normal male levels under a median of 7.6 years of androgen treatment in this cross sectional study. IGF-1 could play a role in the mediation of the effect of androgens on bone in F-M transsexuals.