51 resultados para electron microscopic single particle analysis
Resumo:
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists. This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2-5nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method. Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.
Resumo:
Effects of protein deficiency during the whole period of postnatal development and intensive growth were studied in the rat lung parenchyma. Dams received a low protein diet as follows: early restriction, 8% casein diet from parturition, and delayed restriction, 12% then 8% casein diet from lactation d 8. After weaning (d 21), early restriction and delayed restriction group rats were maintained on the 8% casein diet until d 49, wherefore they were returned to normal food (18% casein) for 11 wk. Lungs were processed for light and electron microscopic morphometry on d 21, 49, and 126. The diffusion capacity of the lung for O2 (DLO2) was also determined from the morphologic parameters. Volume and surface densities of the parenchymal components of malnourished rats did not consistently differ from controls. Because of lower lung volumes, absolute values, including DLO2, were all significantly decreased. Further, although lung volume growth was less impaired than body growth and thus deviated from the normal allometric relationship, most morphometric parameters paralleled body weight changes. Visually, we detected minor morphologic alterations at d 21 and 49, not necessarily reflected by morphometric data. But, importantly, lung parenchyma appeared mature at weaning despite the growth retardation. Normal refeeding resulted in a striking regrowth of the lung parenchyma. Although early restriction rats did not fully catch up in lung volume, most parenchymal parameters and DLO2 were largely restored in both refed groups.
Resumo:
Two-dimensional (2D) crystallisation of Membrane proteins reconstitutes them into their native environment, the lipid bilayer. Electron crystallography allows the structural analysis of these regular protein–lipid arrays up to atomic resolution. The crystal quality depends on the protein purity, ist stability and on the crystallisation conditions. The basics of 2D crystallisation and different recent advances are reviewed and electron crystallography approaches summarised. Progress in 2D crystallisation, sample preparation, image detectors and automation of the data acquisition and processing pipeline makes 2D electron crystallography particularly attractive for the structural analysis of membrane proteins that are too small for single-particle analyses and too unstable to form three-dimensional (3D) crystals.
Resumo:
Clinical application of injectable ceramic cement in comminuted fractures revealed penetration of the viscous paste into the joint space. Not much is known on the fate of this cement and its influence on articular tissues. The purpose of this experimental study was to assess these unknown alterations of joint tissues after intra-articular injection of cement in a rabbit knee. Observation periods were from 1 week up to 24 months, with three rabbits per group. Norian SRS cement was injected into one knee joint, the contralateral side receiving the same volume of Ringers' solution. Light microscopic evaluation of histologic sections was performed, investigating the appearance of the cement, inflammatory reactions, and degenerative changes of the articular surface. No signs of pronounced acute or chronic inflammation were visible. The injected cement was mainly found as a single particle, anterior to the cruciate ligaments. It became surrounded by synovial tissues within 4 weeks and showed signs of superficial resorption. In some specimens, bone formation was seen around the cement. Degeneration of the articular surface showed no differences between experimental and control side, and no changes over time became apparent. No major degenerative changes were induced by the injected cement. The prolonged presence of cement still seems to make it advisable to remove radiologically visible amounts from the joint space.
Resumo:
Lung stereology has a long and successful tradition. From mice to men, the application of new stereological methods at several levels (alveoli, parenchymal cells, organelles, proteins) has led to new insights into normal lung architecture, parenchymal remodelling in emphysema-like pathology, alveolar type II cell hyperplasia and hypertrophy and intracellular surfactant alterations as well as distribution of surfactant proteins. The Euler number of the network of alveolar openings, estimated using physical disectors at the light microscopic level, is an unbiased and direct estimate of alveolar number. Surfactant-producing alveolar type II cells can be counted and sampled for local size estimation with physical disectors at a high magnification light microscopic level. The number of their surfactant storage organelles, lamellar bodies, can be estimated using physical disectors at the EM level. By immunoelectron microscopy, surfactant protein distribution can be analysed with the relative labelling index. Together with the well-established classical stereological methods, these design-based methods now allow for a complete quantitative phenotype analysis in lung development and disease, including the structural characterization of gene-manipulated mice, at the light and electron microscopic level.
Resumo:
Excessive erythrocytosis results in severely increased blood viscosity, which may have significant detrimental effects on endothelial cells and, ultimately, function of the vascular endothelium. Because blood-brain barrier stability is crucial for normal physiological function, we used our previously characterized erythropoietin-overexpressing transgenic (tg6) mouse line (which has a hematocrit of 0.8-0.9) to investigate the effect of excessive erythrocytosis on vessel number, structure, and integrity in vivo. These mice have abnormally high levels of nitric oxide (NO), a potent proinflammatory molecule, suggesting altered vascular permeability and function. In this study, we observed that brain vessel density of tg6 mice was significantly reduced (16%) and vessel diameter was significantly increased (15%) compared with wild-type mice. Although no significant increases in vascular permeability under normoxic or acute hypoxic conditions (8% O2 for 4 h) were detected, electron-microscopic analysis revealed altered morphological characteristics of the tg6 endothelium. Tg6 brain vascular endothelial cells appeared to be activated, with increased luminal protrusions reminiscent of ongoing inflammatory processes. Consistent with this observation, we detected increased levels of intercellular adhesion molecule-1 and von Willebrand factor, markers of endothelial activation and damage, in brain tissue. We propose that chronic excessive erythrocytosis and sustained high hematocrit cause endothelial damage, which may, ultimately, increase susceptibility to vascular disease.
Resumo:
Current concepts of synaptic fine-structure are derived from electron microscopic studies of tissue fixed by chemical fixation using aldehydes. However, chemical fixation with glutaraldehyde and paraformaldehyde and subsequent dehydration in ethanol result in uncontrolled tissue shrinkage. While electron microscopy allows for the unequivocal identification of synaptic contacts, it cannot be used for real-time analysis of structural changes at synapses. For the latter purpose advanced fluorescence microscopy techniques are to be applied which, however, do not allow for the identification of synaptic contacts. Here, two approaches are described that may overcome, at least in part, some of these drawbacks in the study of synapses. By focusing on a characteristic, easily identifiable synapse, the mossy fiber synapse in the hippocampus, we first describe high-pressure freezing of fresh tissue as a method that may be applied to study subtle changes in synaptic ultrastructure associated with functional synaptic plasticity. Next, we propose to label presynaptic mossy fiber terminals and postsynaptic complex spines on CA3 pyramidal neurons by different fluorescent dyes to allow for the real-time monitoring of these synapses in living tissue over extended periods of time. We expect these approaches to lead to new insights into the structure and function of central synapses.
Resumo:
BACKGROUND: Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. METHODS: Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5) or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5). For control, 10 healthy animals with gas (Healthy-Gas, n = 5) or PF5080 filled lungs (Healthy-PF5080, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. RESULTS: Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. CONCLUSION: After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.
Resumo:
PURPOSE: To report 2 cases of exogenous Candida glabrata endophthalmitis after penetrating keratoplasty in recipients of corneas from the same donor transplanted on the same day. METHODS: Case reports with ophthalmologic, electron microscopic, and microbiological findings including fungal strain analysis. RESULTS: Two patients developed fungal keratitis and endophthalmitis caused by the same C. glabrata strain within 1 day after penetrating keratoplasty of corneas from the same donor on the same day. Donor-to-host transmission was postulated when eye bank sterility checks were repeatedly negative. CONCLUSIONS: A short death-to-harvesting time, routine donor rim cultures, and respecting of a time interval before transplantation may provide an additional safety feature in dealing with corneal tissue from high-risk donors.
Resumo:
Glucocorticoids are often applied in neonatology and perinatology to fight the problems of respiratory distress and chronic lung disease. There are, however, many controversies regarding the adverse side effects and long-term clinical benefits of this therapeutic approach. In rats, glucocorticoids are known to seriously impair the formation of alveoli when applied during the first two postnatal weeks even at very low dosage. The current study investigates short-term and long-term glucocorticoid effects on the rat lung by means of morphologic and morphometric observations at light and electron microscopic levels. Application of a high-dosage protocol for only few days resulted in a marked acceleration of lung development with a precocious microvascular maturation resulting in single capillary network septa in the first 4 postnatal days. By postnatal d 10, the lung morphologic phenotype showed a step back in the maturational state, with an increased number of septa with double capillary layer, followed by an exceptional second round of the alveolarization process. As a result of this process, there was an almost complete recovery in the parenchymal lung structure by postnatal d 36, and by d 60, there were virtually no qualitative or quantitative differences between experimental and control rats. These findings indicate that both dosage and duration of glucocorticoid therapy in the early postnatal period are very critical with respect to lung development and maturation and that a careful therapeutic strategy can minimize late sequelae of treatment.
Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network.
Resumo:
Postnatal glucocorticoid treatment of preterm infants was mimicked by treating newborn rats with dexamethasone (0.1-0.01 microg/g, days 1-4). This regimen has been shown to cause delayed alveolarization. Knowing that microvascular maturation (transformation of double- to single-layered capillary networks in alveolar septa) and septal thinning prevent further alveolarization, we measured septal maturation on electron photomicrographs in treated and control animals. In treated rats and before day 10, we observed a premature nonreversing microvascular maturation and a transient septal thinning, which both appeared focally. In vascular casts of both groups, we observed contacts between the two capillary layers of immature alveolar septa, which were predictive for capillary fusions. Studying serial electron microscopic sections of human lungs, we were able to confirm the postulated fusion process for the first time. We conclude that alveolar microvascular maturation indeed occurs by capillary fusion and that the dexamethasone-induced impairment of alveolarization is associated with focal premature capillary fusion.
Resumo:
Clinical, gross, histopathologic, electron microscopic findings and enzymatic analysis of 4 captive, juvenile springboks (Antidorcas marsupialis) showing both polycystic kidneys and a storage disease are described. Springbok offspring (4 of 34; 12%) were affected by either one or both disorders in a German zoo within a period of 5 years (2008-2013). Macroscopic findings included bilaterally severely enlarged kidneys displaying numerous cysts in 4 animals and superior brachygnathism in 2 animals. Histopathologically, kidneys of 4 animals displayed cystic dilation of the renal tubules. In addition, abundant cytoplasmic vacuoles with a diameter ranging from 2 to 10 μm in neurons of the central and peripheral nervous system, hepatocytes, thyroid follicular epithelial cells, pancreatic islets of Langerhans and renal tubular cells were found in 2 springbok neonates indicative of an additional storage disease. Ultrastructurally, round electron-lucent vacuoles, up to 4 μm in diameter, were present in neurons. Enzymatic analysis of liver and kidney tissue of 1 affected springbok revealed a reduced activity of total hexosaminidase (Hex) with relatively increased HexA activity at the same level of total Hex, suggesting a hexosaminidase defect. Pedigree analysis suggested a monogenic autosomal recessive inheritance for both diseases. In summary, related springboks showed 2 different changes resembling both polycystic kidney and a GM2 gangliosidosis similar to the human Sandhoff disease. Whether the simultaneous occurrence of these 2 entities represents an incidental finding or has a genetic link needs to be investigated in future studies.
Resumo:
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.
Resumo:
OBJECTIVES To compare biomechanical rupture risk parameters of asymptomatic, symptomatic and ruptured abdominal aortic aneurysms (AAA) using finite element analysis (FEA). STUDY DESIGN Retrospective biomechanical single center analysis of asymptomatic, symptomatic, and ruptured AAAs. Comparison of biomechanical parameters from FEA. MATERIALS AND METHODS From 2011 to 2013 computed tomography angiography (CTA) data from 30 asymptomatic, 15 symptomatic, and 15 ruptured AAAs were collected consecutively. FEA was performed according to the successive steps of AAA vessel reconstruction, segmentation and finite element computation. Biomechanical parameters Peak Wall Rupture Risk Index (PWRI), Peak Wall Stress (PWS), and Rupture Risk Equivalent Diameter (RRED) were compared among the three subgroups. RESULTS PWRI differentiated between asymptomatic and symptomatic AAAs (p < .0004) better than PWS (p < .1453). PWRI-dependent RRED was higher in the symptomatic subgroup compared with the asymptomatic subgroup (p < .0004). Maximum AAA external diameters were comparable between the two groups (p < .1355). Ruptured AAAs showed the highest values for external diameter, total intraluminal thrombus volume, PWS, RRED, and PWRI compared with asymptomatic and symptomatic AAAs. In contrast with symptomatic and ruptured AAAs, none of the asymptomatic patients had a PWRI value >1.0. This threshold value might identify patients at imminent risk of rupture. CONCLUSIONS From different FEA derived parameters, PWRI distinguishes most precisely between asymptomatic and symptomatic AAAs. If elevated, this value may represent a negative prognostic factor for asymptomatic AAAs.
Resumo:
BACKGROUND Definitive fate of the coronary endothelium after implantation of a drug-eluting stent remains unclear, but evidence has accumulated that treatment with rapamycin-eluting stents impairs endothelial function in human coronary arteries. The aim of our study was to demonstrate this phenomenon on functional, morphological and biochemical level in human internal thoracic arteries (ITA) serving as coronary artery model. METHODS After exposure to rapamycin for 20 h, functional activity of ITA rings was investigated using the organ bath technique. Morphological analysis was performed by scanning electron microscopy and evaluated by two independent observers in blinded fashion. For measurement of endothelial nitric oxide synthase (eNOS) release, mammalian target of rapamycin (mTOR) and protein kinase B (PKB) (Akt) activation, Western blotting on human mammary epithelial cells-1 and on ITA homogenates was performed. RESULTS Comparison of the acetylcholine-induced relaxation revealed a significant concentration-dependent decrease to 66 ± 7 % and 36 ± 7 % (mean ± SEM) after 20-h incubation with 1 and 10 μM rapamycin. Electron microscopic evaluation of the endothelial layer showed no differences between controls and samples exposed to 10 μM rapamycin. Western blots after 20-h incubation with rapamycin (10 nM-1 μM) revealed a significant and concentration-dependent reduction of p (Ser 1177)-eNOS (down to 38 ± 8 %) in human mammary epithelial cells (Hmec)-1. Furthermore, 1 μM rapamycin significantly reduced activation of p (Ser2481)-mTOR (58 ± 11 %), p (Ser2481)-mTOR (23 ± 4 %) and p (Ser473)-Akt (38 ± 6 %) in ITA homogenates leaving Akt protein levels unchanged. CONCLUSIONS The present data suggests that 20-h exposure of ITA rings to rapamycin reduces endothelium-mediated relaxation through down-regulation of Akt-phosphorylation via the mTOR signalling axis within the ITA tissue without injuring the endothelial cell layer.