119 resultados para echo-hiding
Resumo:
OBJECTIVE The aim of this work is to investigate and compare cardiac proton density (PD) weighted fast field echo (FFE) post-mortem magnetic resonance (PMMR) imaging with standard cardiac PMMR imaging (T1-weighted and T2-weighted turbo spin-echo (TSE)), postmortem CT (PMCT) as well as autopsy. MATERIALS AND METHODS Two human cadavers sequentially underwent cardiac PMCT and PMMR imaging (PD-weighted FFE, T1-weighted and T2-weighted TSE) and autopsy. The cardiac PMMR images were compared to each other as well as to PMCT and autopsy findings. RESULTS For the first case, cardiac PMMR exhibited a focal region of low signal in PD-weighted FFE and T2-weighted TSE images, surrounded by a signal intense rim in the T2-weighted images. T1-weighted TSE and PMCT did not appear to identify any focal abnormality. Macroscopic inspection identified a blood clot; histology confirmed this to be a thrombus with an adhering myocardial infarction. In the second case, a myocardial rupture with heart tamponade was identified in all PMMR images, located at the anterior wall of the left ventricle; PMCT excluded additional ruptures. In PD-weighted FFE and T2-weighted TSE images, it occurred hypo-intense, while resulting in small clustered hyper-intense spots in T1-weighted TSE. Autopsy confirmed the PMMR and PMCT findings. CONCLUSIONS Presented initial results have shown PD-weighted FFE to be a valuable imaging sequence in addition to traditional T2-weighted TSE imaging for blood clots and myocardial haemorrhage with clearer contrast between affected and healthy myocardium.
Resumo:
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T eq up to 2,000 K, to those of a few Earth masses, with T eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.
Resumo:
Sound speed as a diagnostic marker for various diseases of human tissue has been of interest for a while. Up to now, mostly transmission ultrasound computed tomography (UCT) was able to detect spatially resolved sound speed, and its promise as a diagnostic tool has been demonstrated. However, UCT is limited to acoustically transparent samples such as the breast. We present a novel technique where spatially resolved detection of sound speed can be achieved using conventional pulse-echo equipment in reflection mode. For this purpose, pulse-echo images are acquired under various transmit beam directions and a two-dimensional map of the sound speed is reconstructed from the changing phase of local echoes using a direct reconstruction method. Phantom results demonstrate that a high spatial resolution (1 mm) and contrast (0.5 % of average sound speed) can be achieved suitable for diagnostic purposes. In comparison to previous reflection-mode based methods, CUTE works also in a situation with only diffuse echoes, and its direct reconstruction algorithm enables real-time application. This makes it suitable as an addition to conventional clinical ultrasound where it has the potential to benefit diagnosis in a multimodal approach. In addition, knowledge of the spatial distribution of sound speed allows full aberration correction and thus improved spatial resolution and contrast of conventional B-mode ultrasound. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
The limitations of diagnostic echo ultrasound have motivated research into novel modalities that complement ultrasound in a multimodal device. One promising candidate is speed of sound imaging, which has been found to reveal structural changes in diseased tissue. Transmission ultrasound tomography shows speed of sound spatially resolved, but is limited to the acoustically transparent breast. We present a novel method by which speed-of-sound imaging is possible using classic pulse-echo equipment, facilitating new clinical applications and the combination with state-of-the art diagnostic ultrasound. Pulse-echo images are reconstructed while scanning the tissue under various angles using transmit beam steering. Differences in average sound speed along different transmit directions are reflected in the local echo phase, which allows a 2-D reconstruction of the sound speed. In the present proof-of-principle study, we describe a contrast resolution of 0.6% of average sound speed and a spatial resolution of 1 mm (laterally) × 3 mm (axially), suitable for diagnostic applications.
Resumo:
Computed ultrasound tomography in echo-mode (CUTE) allows imaging the speed of sound inside tissue using hand-held pulse-echo ultrasound. This technique is based on measuring the changing local phase of beamformed echoes when changing the transmit beam steering angle. Phantom results have shown a spatial resolution and contrast that could qualify CUTE as a promising novel diagnostic modality in combination with B-mode ultrasound. Unfortunately, the large intensity range of several tens of dB that is encountered in clinical images poses difficulties to echo phase tracking and results in severe artefacts. In this paper we propose a modification to the original technique by which more robust echo tracking can be achieved, and we demonstrate in phantom experiments that dynamic range artefacts are largely eliminated. Dynamic range artefact reduction also allowed for the first time a clinical implementation of CUTE with sufficient contrast to reproducibly distinguish the different speed of sound in different tissue layers of the abdominal wall and the neck.
Resumo:
Aberrations of the acoustic wave front, caused by spatial variations of the speed-of-sound, are a main limiting factor to the diagnostic power of medical ultrasound imaging. If not accounted for, aberrations result in low resolution and increased side lobe level, over all reducing contrast in deep tissue imaging. Various techniques have been proposed for quantifying aberrations by analysing the arrival time of coherent echoes from so-called guide stars or beacons. In situations where a guide star is missing, aperture-based techniques may give ambiguous results. Moreover, they are conceptually focused on aberrators that can be approximated as a phase screen in front of the probe. We propose a novel technique, where the effect of aberration is detected in the reconstructed image as opposed to the aperture data. The varying local echo phase when changing the transmit beam steering angle directly reflects the varying arrival time of the transmit wave front. This allows sensing the angle-dependent aberration delay in a spatially resolved way, and thus aberration correction for a spatially distributed volume aberrator. In phantoms containing a cylindrical aberrator, we achieved location-independent diffraction-limited resolution as well as accurate display of echo location based on reconstructing the speed-of-sound spatially resolved. First successful volunteer results confirm the clinical potential of the proposed technique.
Resumo:
OBJECTIVES Readout-segmented echo planar imaging (rs-EPI) significantly reduces susceptibility artifacts in diffusion-weighted imaging (DWI) of the breast compared to single-shot EPI but is limited by longer scan times. To compensate for this, we tested a new simultaneous multi-slice (SMS) acquisition for accelerated rs-EPI. MATERIALS AND METHODS After approval by the local ethics committee, eight healthy female volunteers (age, 38.9±13.1 years) underwent breast MRI at 3T. Conventional as well as two-fold (2× SMS) and three-fold (3× SMS) slice-accelerated rs-EPI sequences were acquired at b-values of 50 and 800s/mm(2). Two independent readers analyzed the apparent diffusion coefficient (ADC) in fibroglandular breast parenchyma. The signal-to-noise ratio (SNR) was estimated based on the subtraction method. ADC and SNR were compared between sequences by using the Friedman test. RESULTS The acquisition time was 4:21min for conventional rs-EPI, 2:35min for 2× SMS rs-EPI and 1:44min for 3× SMS rs-EPI. ADC values were similar in all sequences (mean values 1.62×10(-3)mm(2)/s, p=0.99). Mean SNR was 27.7-29.6, and no significant differences were found among the sequences (p=0.83). CONCLUSION SMS rs-EPI yields similar ADC values and SNR compared to conventional rs-EPI at markedly reduced scan time. Thus, SMS excitation increases the clinical applicability of rs-EPI for DWI of the breast.
Resumo:
PURPOSE To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. MATERIALS AND METHODS After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. RESULTS Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). CONCLUSION Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. KEY POINTS • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.
Resumo:
The authors present the case of an 81-year-old patient with severe aortic stenosis who experienced left ventricular embolization of an aortic bioprosthesis during transapical aortic valve implantation. The authors discuss reasons for prosthesis embolization and reinforce the attention to technical details and the widespread use of multimodality imaging techniques. In this context, transesophageal echocardiography appears indispensable in the detection and management of procedure-related complications.
Resumo:
BACKGROUND: Physiologic data display is essential to decision making in critical care. Current displays echo first-generation hemodynamic monitors dating to the 1970s and have not kept pace with new insights into physiology or the needs of clinicians who must make progressively more complex decisions about their patients. The effectiveness of any redesign must be tested before deployment. Tools that compare current displays with novel presentations of processed physiologic data are required. Regenerating conventional physiologic displays from archived physiologic data is an essential first step. OBJECTIVES: The purposes of the study were to (1) describe the SSSI (single sensor single indicator) paradigm that is currently used for physiologic signal displays, (2) identify and discuss possible extensions and enhancements of the SSSI paradigm, and (3) develop a general approach and a software prototype to construct such "extended SSSI displays" from raw data. RESULTS: We present Multi Wave Animator (MWA) framework-a set of open source MATLAB (MathWorks, Inc., Natick, MA, USA) scripts aimed to create dynamic visualizations (eg, video files in AVI format) of patient vital signs recorded from bedside (intensive care unit or operating room) monitors. Multi Wave Animator creates animations in which vital signs are displayed to mimic their appearance on current bedside monitors. The source code of MWA is freely available online together with a detailed tutorial and sample data sets.
Resumo:
Purpose: To prospectively determine on T2 cartilage maps the effect of unloading during a clinical magnetic resonance (MR) examination in the postoperative follow-up of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint. Materials and Methods: Ethical approval for this study was provided by the local ethics commission, and written informed consent was obtained. Thirty patients (mean age, 35.4 years +/- 10.5) with a mean postoperative follow-up period of 29.1 months +/- 24.4 were enrolled. A multiecho spin-echo T2-weighted sequence was performed at the beginning (early unloading) and end (late unloading) of the MR examination, with an interval of 45 minutes. Mean and zonal region of interest T2 measurements were obtained in control cartilage and cartilage repair tissue. Statistical analysis of variance was performed. Results: The change in T2 values of control cartilage (early unloading, 50.2 msec +/- 8.4; late unloading, 51.3 msec +/- 8.5) was less pronounced than the change in T2 values of cartilage repair tissue (early unloading, 51.8 msec +/- 11.7; late unloading, 56.1 msec +/- 14.4) (P = .024). The difference between control cartilage and cartilage repair tissue was not significant for early unloading (P = .314) but was significant for late unloading (P = .036). Zonal T2 measurements revealed a higher dependency on unloading for the superficial cartilage layer. Conclusion: Our results suggest that T2 relaxation can be used to assess early and late unloading values of articular cartilage in a clinical setting and that the time point of the quantitative T2 measurement affects the differentiation between native and abnormal articular cartilage. (c) RSNA, 2010.