33 resultados para dyes
Resumo:
The impact of the systematic variation of either DeltapK(a) or mobility of 140 biprotic carrier ampholytes on the conductivity profile of a pH 3-10 gradient was studied by dynamic computer simulation. A configuration with the greatest DeltapK(a) in the pH 6-7 range and uniform mobilities produced a conductivity profile consistent with that which is experimentally observed. A similar result was observed when the neutral (pI = 7) ampholyte is assigned the lowest mobility and mobilities of the other carriers are systematically increased as their pI's recede from 7. When equal DeltapK(a) values and mobilities are assigned to all ampholytes a conductivity plateau in the pH 5-9 region is produced which does not reflect what is seen experimentally. The variation in DeltapK(a) values is considered to most accurately reflect the electrochemical parameters of commercially available mixtures of carrier ampholytes. Simulations with unequal mobilities of the cationic and anionic species of the carrier ampholytes show either cathodic (greater mobility of the cationic species) or anodic (greater mobility of the anionic species) drifts of the pH gradient. The simulated cationic drifts compare well to those observed experimentally in a capillary in which the focusing of three dyes was followed by whole column optical imaging. The cathodic drift flattens the acidic portion of the gradient and steepens the basic part. This phenomenon is an additional argument against the notion that focused zones of carrier ampholytes have no electrophoretic flux.
Resumo:
The realisation of molecular assemblies featuring specific macroscopic properties is a prime example for the versatility of supramolecular organisation. Microporous materials such as zeolite L are well suited for the preparation of host-guest composites containing dyes, complexes, or clusters. This short tutorial focuses on the possibilities offered by zeolite L to study and influence Förster resonance energy transfer inside of its nanochannels. The highly organised host-guest materials can in turn be structured on a larger scale to form macroscopic patterns, making it possible to create large-scale structures from small, highly organised building blocks for novel optical applications.
Resumo:
Introduction: Slow conduction and ectopic activity are key elements of cardiac arrhythmogenesis. Both anomalies can be caused by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. Because MFBs are characterized by the expression of {alpha}-smooth muscle actin ({alpha}-SMA) containing stress fibers, we investigated whether pharmacological interference with stress fiber formation might affect myofibroblast arrhythmogenicity. Methods: Experiments were done with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage sensitive dyes. Electrophysiological characteristics of single MFBs were assessed using patch clamp techniques. Actin polymerization was inhibited by latrunculin B (LtB). Data are given as mean±S.D. (n=5 to 22). Results: As assessed by immunocytochemistry, exposure of MFBs to LtB (0.3–10 µmol/L) profoundly disrupted stress fiber formation. This led, within minutes, to a dramatic change in cell morphology with MFBs assuming an astrocyte-like shape. In pure cardiomyocyte preparations, LtB had negligible effects on impulse conduction velocity ({theta}) and maximal action potential upstroke velocities (dV/dtmax). In contrast, LtB applied to MFB coated cardiomyocyte strands substantially increased {theta} from 247±32 to 371±26 mm/s and dV/dtmax from 40±7 to 81±1 %APA/ms, i.e., to values similar to those of pure cardiomyocyte strands (342±13 mm/s; 82±1 %APA/ms). Moreover, LtB at 1 µmol/L completely abolished MFB induced ectopic activity. LtB induced normalization of electrophysiologic parameters can be explained by the finding that LtB hyperpolarized MFBs from –25 mV to –50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause slow conduction and ectopic activity. Conclusions: Pharmacological interference with the cytoskeleton of cardiac MFBs alters their electrophysiological phenotype to such an extent that detrimental effects on cardiomyocyte electrophysiology are completely abolished. This observation might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs.
Resumo:
Background: Slow conduction and ectopic activity are major determinants of cardiac arrhythmogenesis. Both of these conditions can be elicited by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. MFBs appear during structural remodeling of the heart and are characterized by the expression of α-smooth muscle actin (α-SMA) containing stress fibers. In this study, we investigated whether pharmacological interference with the actin cytoskeleton affects myofibroblast arrhythmogeneicity. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse conduction velocity (θ) and maximal upstroke velocities of propagated action potentials (dV/dtmax), expressed as % action potential amplitude change (%APA) per ms, were measured optically using voltage sensitive dyes. Actin was destabilized by latrunculin B (LtB) and cytochalasin D and stabilized with jasplakinolide. Data are given as mean ± S.D. (n = 5-22). Single cell electrophysiology was assessed using standard patch-clamp techniques. Results: As revealed by immunocytochemistry, exposure of MFBs to LtB (0.01-10 μmol/L) profoundly disrupted stress fibers which led to drastic changes in cell morphology with MFBs assuming an astrocyte-like shape. In control cardiomyocyte strands (no MFB coat), LtB had negligible effects on θ and dV/dtmax. In contrast, LtB applied to MFB-coated strands increased θ dose-dependently from 197 ± 35 mm/s to 344 ± 26 mm/s and dV/dtmax from 38 ± 5 to 78 ± 3% APA/ms, i.e., to values virtually identical to those of cardiomyocyte control strands (339 ± 24 mm/s; 77 ± 3% APA/ms). Highly similar results were obtained when exposing the preparations to cytochalasin D. In contrast, stabilization of actin with increasing concentrations of jasplakinolide exerted no significant effects on impulse conduction characteristics in MFB-coated strands. Whole-cell patch-clamp experiments showed that LtB hyperpolarized MFBs from -25 mV to -50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause arrhythmogenic slow conduction and ectopic activity. Conclusion: Pharmacological interference with the actin cytoskeleton of cardiac MFBs affects their electrophysiological phenotype to such an extent that they loose their detrimental effects on cardiomyocyte electrophysiology. This result might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs.
Resumo:
The DNA-enabled dimerization of pentamethine cyanine (Cy5) dyes was studied by optical methods. The value of cyanine as a chiroptical reporter using a monomer-to-dimer switch is demonstrated. The specific shape of the CD signal and its high intensity are a result of J-type assembly.
Resumo:
We describe a microarray based broad-range screening technique for Escherichia coli virulence typing. Gene probes were amplified by PCR from a plasmid bank of characterised E. coli virulence genes and were spotted onto a glass slide to form an array of capture probes. Genomic DNA from E. coli strains which were to be tested for the presence of these virulence gene sequences was labelled with fluorescent cyanine dyes by random amplification and then hybridised against the array of probes. The hybridisation, washing and data analysis conditions were optimised for glass slides, and the applicability of the method for identifying the presence of the virulence genes was determined using reference strains and clinical isolates. It was found to be a sensitive screening method for detecting virulence genes, and a powerful tool for determining the pathotype of E. coli. It will be possible to expand and automate this microarray technique to make it suitable for rapid and reliable diagnostic screening of bacterial isolates.
Resumo:
The use of biomarkers to infer drug response in patients is being actively pursued, yet significant challenges with this approach, including the complicated interconnection of pathways, have limited its application. Direct empirical testing of tumor sensitivity would arguably provide a more reliable predictive value, although it has garnered little attention largely due to the technical difficulties associated with this approach. We hypothesize that the application of recently developed microtechnologies, coupled to more complex 3-dimensional cell cultures, could provide a model to address some of these issues. As a proof of concept, we developed a microfluidic device where spheroids of the serous epithelial ovarian cancer cell line TOV112D are entrapped and assayed for their chemoresponse to carboplatin and paclitaxel, two therapeutic agents routinely used for the treatment of ovarian cancer. In order to index the chemoresponse, we analyzed the spatiotemporal evolution of the mortality fraction, as judged by vital dyes and confocal microscopy, within spheroids subjected to different drug concentrations and treatment durations inside the microfluidic device. To reflect microenvironment effects, we tested the effect of exogenous extracellular matrix and serum supplementation during spheroid formation on their chemotherapeutic response. Spheroids displayed augmented chemoresistance in comparison to monolayer culturing. This resistance was further increased by the simultaneous presence of both extracellular matrix and high serum concentration during spheroid formation. Following exposure to chemotherapeutics, cell death profiles were not uniform throughout the spheroid. The highest cell death fraction was found at the center of the spheroid and the lowest at the periphery. Collectively, the results demonstrate the validity of the approach, and provide the basis for further investigation of chemotherapeutic responses in ovarian cancer using microfluidics technology. In the future, such microdevices could provide the framework to assay drug sensitivity in a timeframe suitable for clinical decision making.
Resumo:
In 1846, T. Wharton-Jones described a coarsely granular stage in the development of granulocytic cells in animal and human blood. Shortly thereafter, Max Schultze redefined the coarsely granular cells as a type distinct from finely granular cells, rather than just a developmental stage. It was, however, not until 1879, when Paul Ehrlich introduced a method to distinguish granular cells by the staining properties of their granules, that a classification became possible. An intensive staining for eosin, among other aniline dyes, was eponymous for the coarsely granular cell type, which thereupon became referred to as eosinophil granulocyte. Eosinophilia had already been described in many diseases by the late 19th century. The role of these cells, however, today remains a matter of continuing speculation and investigation. Many functions have been attributed to the eosinophil over the years, often linked to increasing knowledge about the granular and cytoplasmatic contents. A better understanding of the regulatory mechanisms of eosinopoiesis has led to the development of knock-out mice strains as well as therapeutic strategies for reducing the eosinophil load in patients. The effect of these therapeutics and the characterization of the knock-out phenotypes have led to a great increase in the knowledge of the role of the eosinophil in disease. Today we think of the eosinophil as a multifunctional cell involved in host defense, tissue damage and remodeling, as well as immunomodulation.
Resumo:
Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation and thus not eliminated by classical wastewater treatments. In the development of a phytotreatment to remove sulphonated aromatic compounds from dye and textile industrial effluents, it has been shown that rhubarb (Rheum rabarbarum) and common sorrel (Rumex acetosa) are the most efficient plants. Both species, producing natural anthraquinones, not only accumulate, but also transform these xenobiotic chemicals. Even if the precise biochemical mechanisms involved in the detoxification of sulphonated anthraquinones are not yet understood, they probably have cross talks with secondary metabolism, redox processes and plant energy metabolism. The aim of the present study was to investigate the possible roles of cytochrome P450 monooxygenases and peroxidases in the detoxification of several sulphonated anthraquinones. Both plant species were cultivated in a greenhouse under hydroponic conditions, with or without sulphonated anthraquinones. Plants were harvested at different times and either microsomal or cytosolic fractions were prepared. The monooxygenase activity of cytochromes P450 toward several sulphonated anthraquinones was tested using a new method based on the fluorimetric detection of oxygen consumed during cytochromes P450-catalysed reactions. The activity of cytosolic peroxidases was measured by spectrophotometry, using guaiacol as a substrate. A significant activity of cytochromes P450 was detected in rhubarb leaves, while no (rhizome) or low (petioles and roots) activity was found in other parts of the plants. An induction of this enzyme was observed at the beginning of the exposition to sulphonated anthraquinones. The results also indicated that cytochromes P450 were able to accept as substrate the five sulphonated anthraquinones, with a higher activity toward AQ-2,6-SS (0.706 nkat/mg protein) and AQ-2-S (0.720 nkat/mg protein). An activity of the cytochromes P450 was also found in the leaves of common sorrel (1.212 nkat/mg protein (AQ-2,6-SS)), but no induction of the activity occurred after the exposition to the pollutant. The activity of peroxidases increased when rhubarb was cultivated in the presence of the five sulphonated anthraquinones (0.857 nkat/mg protein). Peroxidase activity was also detected in the leaves of the common sorrel (0.055 nkat/mg protein), but in this plant, no significant difference was found between plants cultivated with and without sulphonated anthraquinones. Results indicated that the activity of cytochromes P450 and peroxidases increased in rhubarb in the presence of sulphonated anthraquinones and were involved in their detoxification mechanisms. These results suggest the existence in rhubarb and common sorrel of specific mechanisms involved in the metabolism of sulphonated anthraquinones. Further investigation should be performed to find the next steps of this detoxification pathway. Besides these promising results for the phytotreatment of sulphonated anthraquinones, it will be of high interest to develop and test, at small scale, an experimental wastewater treatment system to determine its efficiency. On the other hand, these results reinforce the idea that natural biodiversity should be better studied to use the most appropriate species for the phytotreatment of a specific pollutant.
Resumo:
Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation, and thus contaminating many industrial effluents and rivers. In the development of a phytotreatment to remove sulphonated aromatic compounds, rhubarb (Rheum rhaponticum), a plant producing natural anthraquinones, as well as maize (Zea mays) and celery (Apium graveolens), plants not producing anthraquinones, were tested for their ability to metabolise these xenobiotics. Plants were cultivated under hydroponic conditions, with or without sulphonated anthraquinones, and were harvested at different times. Either microsomal or cytosolic fractions were prepared. The monooxygenase activity of cytochromes P450 towards several sulphonated anthraquinones was tested using a new method based on the fluorimetric detection of oxygen consumed during cytochromes P450-catalysed reactions. The activity of cytosolic peroxidases was measured by spectrophotometry, using guaiacol as a substrate. Results indicated that the activity of cytochromes P450 and peroxidases significantly increased in rhubarb plants cultivated in the presence of sulphonated anthraquinones. A higher activity of cytochromes P450 was also detected in maize and celery exposed to the pollutants. In these two plants, a peroxidase activity was also detected, but without a clear difference between the control plants and the plants exposed to the organic contaminants. This research demonstrated the existence in rhubarb, maize and celery of biochemical mechanisms involved in the metabolism and detoxification of sulphonated anthraquinones. Taken together, results confirmed that rhubarb might be the most appropriate plant for the phytotreatment of these organic pollutants.
Resumo:
Introduction: Anterior cruciate ligament (ACL) injuries are very common; in Germany incidence of ACL ruptures is estimated at 32 per 100 000 in the general population and in the sports community this rate more than doubles. Current gold standard for anterior cruciate lig- ament repair is reconstruction using an autograft [1]. However, this approach has shown some limitations. A new method has been her- alded by the Knee Team at the Bern University Hospital (Inselspital) and the Sonnenhof clinic called Dynamic Intraligamentary Stabilization (DIS), which keeps ACL remnants in place in order to promote biologi- cal healing and makes use of a dynamic screw system [2]. The aim of this study was to investigate the cytocompatibility of collagen patches in combination with DIS to support regeneration of the ACL. The spe- cific hypothesis we tested was whether MSCs would differentiate towards TCs in co-culture. Materials and methods: Primary Tenocytes (TCs) and human bone marrow derived mesenchymal stem cells (MSCs) were harvested from ACL removed during knee prothesis or from bone marrow aspirations (Ethical Permit 187/10). Cells were seeded on two types of three dimensional carriers currently approved for cartilage repair, Novocart (NC, B. Brown) and Chondro-Gide (CG, Geistlich). These scaffolds comprise collagen structures with interconnecting pores originally developed for seeding of chondrocytes in the case of CG. ~40k cells were seeded on punched zylindrical cores of 8 mm in Ø and cultured on CG or NC patches for up to 7 days. The cells were either cultured as TC only, MSC only or co-cultured in a 1:1 mix on the scaffolds and on both sides of culture inserts (PET, high density pore Ø 0.4 mm, BD, Fal- con) with cell-cell contact. We monitored DNA content, GAG and HOP-content, tracked the cells using DIL and DIO fluorescent dyes (Molecular Probes, Life technologies) and confocal laser scanning and SEM microscopy as well as RT-PCR of tenocyte specific markers (i.e. col 1 and 3, TNC, TNMD, SCXA&B, and markers of dedifferentiation ACAN, col2, MMP3, MMP13). Finally, H&E stain was interpreted on cryosections and SEM images of cells on the scaffold were taken. Results: ThecLSMimagesshowedcellproliferationoverthe7dayson both matrices, however, on CG there were much fewer MSCs attached than on NC. SEM images showed a roundish chondrocyte-like pheno- type of cells on CG whereas on NC the phenotype was more teno- cyte-like (Fig. 1). Gene expression of both, MSC and TC seem to confirm a more favorable environment in 3D for both patches rather than monolayer control.
Resumo:
In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.
Resumo:
The adenosine receptors are members of the G-protein coupled receptor (GPCR) family which represents the largest class of cell-surface proteins mediating cellular communication. As a result, GPCRs are formidable drug targets and it is estimated that approximately 30% of the marketed drugs act through members of this receptor class. There are four known subtypes of adenosine receptors: A1, A2A, A2B and A3. The adenosine A1 receptor, which is the subject of this presentation, mediates the physiological effects of adenosine in various tissues including the brain, heart, kidney and adipocytes. In the brain for instance, its role in epilepsy and ischemia has been the focus of many studies. Previous attempts to study the biosynthesis, trafficking and agonist-induced internalisation of the adenosine A1 receptor in neurons using fluorescent protein-receptor fusion constructs have been hampered by the sheer size of the fluorescent protein (GFP) that ultimately affected the function of the receptor. We have therefore initiated a research programme to develop small molecule fluorescent agonists that selectively activate the adenosine A1 receptor. Our probe design is based on the endogenous ligand adenosine and the known unselective adenosine receptor agonist NECA. We have synthesised a small library of non-fluorescent adenosine derivatives that have different cyclic and bicyclic moieties at the 6 position of the purine ring and have evaluated the pharmacology of these compounds using a yeast-based assay. This analysis revealed compounds with interesting behaviour, i.e. exhibiting subtype-selectivity and biased signalling, that can be potentially used as tool compounds in their own right for cellular studies of the adenosine A1 receptor. Furthermore, we have also linked fluorescent dyes to the purine ring and discovered fluorescent compounds that can activate the adenosine A1 receptor.
Resumo:
This work presents the preliminary study of new carbonaceous materials (CMs) obtained from exhausted sludge, their use in the heterogeneous anaerobic process of biodecolorization of azo dyes and the comparison of their performance with one commercial active carbon. The preparation of carbonaceous materials was conducted through chemical activation and carbonization. Chemical activation was carried out through impregnation of sludge-exhausted materials with ZnCl2 and the activation by means of carbonization at different temperatures (400, 600 and 800°C). Their physicochemical and surface characteristics were also investigated. Sludge based carbonaceous (SBC) materials SBC400, SBC600 and SBC800 present values of 13.0, 111.3 and 202.0m(2)/g of surface area. Biodecolorization levels of 76% were achieved for SBC600 and 86% for SBC800 at space time (τ) of 1.0min, similar to that obtained with commercial activated carbons in the continuous anaerobic up-flow packed bed reactor (UPBR). The experimental data fit well to the first order kinetic model and equilibrium data are well represented by the Langmuir isotherm model. Carbonaceous materials show high level of biodecolorization even at very short space times. Results indicate that carbonaceous materials prepared from sludge-exhausted materials have outstanding textural properties and significant degradation capacity for treating textile effluents.
Resumo:
Pesticides are used to protect plants all over the world. Their increasing specificity has been due to utilization of differences in biochemical processes, and has been accompanied by lower human toxicity. Nevertheless cases of poisoning are still observed. While certain toxic substances are provided with characteristic dyes or pigments to facilitate easy identification, no overview of pesticide colors exists. The lack of available product information prompted us to explore the colors and dyes of pesticides registered in Germany, most of which are commercially available worldwide. A compilation of the colors and odors of 207 pesticide products is presented. While some of the substances can be identified by their physical characteristics, in other cases, the range of possibilities can be narrowed by their nature and color.