20 resultados para driver information systems, genetic algorithms, prediction theory, transportation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud Computing has evolved to become an enabler for delivering access to large scale distributed applications running on managed network-connected computing systems. This makes possible hosting Distributed Enterprise Information Systems (dEISs) in cloud environments, while enforcing strict performance and quality of service requirements, defined using Service Level Agreements (SLAs). {SLAs} define the performance boundaries of distributed applications, and are enforced by a cloud management system (CMS) dynamically allocating the available computing resources to the cloud services. We present two novel VM-scaling algorithms focused on dEIS systems, which optimally detect most appropriate scaling conditions using performance-models of distributed applications derived from constant-workload benchmarks, together with SLA-specified performance constraints. We simulate the VM-scaling algorithms in a cloud simulator and compare against trace-based performance models of dEISs. We compare a total of three SLA-based VM-scaling algorithms (one using prediction mechanisms) based on a real-world application scenario involving a large variable number of users. Our results show that it is beneficial to use autoregressive predictive SLA-driven scaling algorithms in cloud management systems for guaranteeing performance invariants of distributed cloud applications, as opposed to using only reactive SLA-based VM-scaling algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of information overload on Facebook is exacerbating as users expand their networks. Growing quantity and increasingly poor quality of information on the Newsfeed may interfere with the hedonic experience of users resulting in frustration and dissatisfaction. In the long run, such developments threaten to undermine sustainability of the platform. To address these issues, our study adopts a grounded theory approach to explore the phenomenon of information overload on Facebook. We investigate main sources of information overload, identify strategies users adopt to deal with it as well as possible consequences. In-depth analysis of the phenomenon allows us to uncover individual peculiarities for identification of relevant information. Based on them we provide valuable recommendations for network providers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many technological developments of the past two decades come with the promise of greater IT flexi-bility, i.e. greater capacity to adapt IT. These technologies are increasingly used to improve organiza-tional routines that are not affected by large, hard-to-change IT such as ERP. Yet, most findings on the interaction of routines and IT stem from contexts where IT is hard to change. Our research ex-plores how routines and IT co-evolve when IT is flexible. We review the literatures on routines to sug-gest that IT may act as a boundary object that mediates the learning process unfolding between the ostensive and the performative aspect of the routine. Although prior work has concluded from such conceptualizations that IT stabilizes routines, we qualify that flexible IT can also stimulate change because it enables learning in short feedback cycles. We suggest that, however, such change might not always materialize because it is contingent on governance choices and technical knowledge. We de-scribe the case-study method to explore how routines and flexible IT co-evolve and how governance and technical knowledge influence this process. We expect to contribute towards stronger theory of routines and to develop recommendations for the effective implementation of flexible IT in loosely coupled routines.