51 resultados para diversified grazing ecosystems
Resumo:
Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The "Biocomplexity of Patterned Ground Ecosystems" project examined patterned-ground features (PGFs) in all five Arctic bioclimate subzones along an 1800-km trans-Arctic temperature gradient in northern Alaska and northwestern Canada. This paper provides an overview of the transect to illustrate the trends in climate, PGFs, vegetation, n-factors, soils, active-layer depth, and frost heave along the climate gradient. We emphasize the thermal effects of the vegetation and snow on the heat and water fluxes within patterned-ground systems. Four new modeling approaches build on the theme that vegetation controls microscale soil temperature differences between the centers and margins of the PGFs, and these in turn drive the movement of water, affect the formation of aggradation ice, promote differential soil heave, and regulate a host of system propel-ties that affect the ability of plants to colonize the centers of these features. We conclude with an examination of the possible effects of a climate wan-ning on patterned-ground ecosystems.
Resumo:
The relationship of different types of grassland use with plant species richness and composition (functional groups of herbs, legumes, and grasses) has so far been studied at small regional scales or comprising only few components of land use. We comprehensively studied the relationship between abandonment, fertilization, mowing intensity, and grazing by different livestock types on plant diversity and composition of 1514 grassland sites in three regions in North-East, Central and South-West Germany. We further considered environmental site conditions including soil type and topographical situation. Fertilized grasslands showed clearly reduced plant species diversity (−15% plant species richness, −0.1 Shannon diversity on fertilized grasslands plots of 16 m2) and changed composition (−3% proportion of herb species), grazing had the second largest effects and mowing the smallest ones. Among the grazed sites, the ones grazed by sheep had higher than average species richness (+27%), and the cattle grazed ones lower (−42%). Further, these general results were strongly modulated by interactions between the different components of land use and by regional context: land-use effects differed largely in size and sometimes even in direction between regions. This highlights the importance of comparing different regions and to involve a large number of plots when studying relationships between land use and plant diversity. Overall, our results show that great caution is necessary when extrapolating results and management recommendations to other regions.
Resumo:
Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.
Resumo:
In recent years, the formerly oligopolistic Enterprise Application Software (EAS) industry began to disintegrate into focal inter-firm networks with one huge, powerful, and multi-national plat-form vendor as the center, surrounded by hundreds or even thousands of small, niche players that act as complementors. From a theoretical point of view, these platform ecosystems may be governed by two organizing principles - trust and power. However, it is neither from a practical nor from a theoretical perspective clear, how trust and power relate to each other, i.e. whether they act as complements or substitutes. This study tries to elaborate our understanding of the relationship of trust and power by exploring their interplay using multi-dimensional conceptual-izations of trust and power, and by investigating potential dynamics in this interplay over the course of a partnership. Based on an exploratory multiple-case study of seven dyadic partner-ships between four platform vendors, and seven complementors, we find six different patterns of how trust and power interact over time. These patterns bear important implications for the suc-cessful management of partnerships between platform vendors and complementors, and clarify the theoretical debate surrounding the relationship of trust and power.
Resumo:
This paper presents a case study of analyzing a legacy PL/1 ecosystem that has grown for 40 years to support the business needs of a large banking company. In order to support the stakeholders in analyzing it we developed St1-PL/1 — a tool that parses the code for association data and computes structural metrics which it then visualizes using top-down interactive exploration. Before building the tool and after demonstrating it to stakeholders we conducted several interviews to learn about legacy ecosystem analysis requirements. We briefly introduce the tool and then present results of analysing the case study. We show that although the vision for the future is to have an ecosystem architecture in which systems are as decoupled as possible the current state of the ecosystem is still removed from this. We also present some of the lessons learned during our experience discussions with stakeholders which include their interests in automatically assessing the quality of the legacy code.
Resumo:
We present the results of an investigation into the nature of the information needs of software developers who work in projects that are part of larger ecosystems. In an open- question survey we asked framework and library developers about their information needs with respect to both their upstream and downstream projects. We investigated what kind of information is required, why is it necessary, and how the developers obtain this information. The results show that the downstream needs are grouped into three categories roughly corresponding to the different stages in their relation with an upstream: selection, adop- tion, and co-evolution. The less numerous upstream needs are grouped into two categories: project statistics and code usage. The current practices part of the study shows that to sat- isfy many of these needs developers use non-specific tools and ad hoc methods. We believe that this is a largely unexplored area of research.