24 resultados para dispersion equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the association between individual differences in sociosexual orientation and four aspects of body image in 156 male and 136 female students. While men were characterized by a less restricted sociosexual orientation, higher self-perceived physical attractiveness, and more pronounced self-rated physical assertiveness, women placed more emphasis on accentuation of body presentation. Structural equation modeling revealed significant positive relationships between sociosexual attitudes and physical attractiveness and accentuation of body presentation as well as between sociosexual behavior and physical attractiveness for the total sample. When introducing sex as a grouping variable, the attitudinal and behavioral components of sociosexuality were reliably related to both physical attractiveness and accentuation of body presentation as two aspects of body image in men, but not in women. Furthermore, our findings suggest that accentuation of body presentation represents a goal-directed behavior in men to increase the likelihood of having uncommitted sex but serves additional functions widely unrelated to unrestrictive sociosexual behavior in women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last century, several mathematical models have been developed to calculate blood ethanol concentrations (BAC) from the amount of ingested ethanol and vice versa. The most common one in the field of forensic sciences is Widmark's equation. A drinking experiment with 10 voluntary test persons was performed with a target BAC of 1.2 g/kg estimated using Widmark's equation as well as Watson's factor. The ethanol concentrations in the blood were measured using headspace gas chromatography/flame ionization and additionally with an alcohol Dehydrogenase (ADH)-based method. In a healthy 75-year-old man a distinct discrepancy between the intended and the determined blood ethanol concentration was observed. A blood ethanol concentration of 1.83 g/kg was measured and the man showed signs of intoxication. A possible explanation for the discrepancy is a reduction of the total body water content in older people. The incident showed that caution is advised when using the different mathematical models in aged people. When estimating ethanol concentrations, caution is recommended with calculated results due to potential discrepancies between mathematical models and biological systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species coexistence has been a fundamental issue to understand ecosystem functioning since the beginnings of ecology as a science. The search of a reliable and all-encompassing explanation for this issue has become a complex goal with several apparently opposing trends. On the other side, seemingly unconnected with species coexistence, an ecological state equation based on the inverse correlation between an indicator of dispersal that fits gamma distribution and species diversity has been recently developed. This article explores two factors, whose effects are inconspicuous in such an equation at the first sight, that are used to develop an alternative general theoretical background in order to provide a better understanding of species coexistence. Our main outcomes are: (i) the fit of dispersal and diversity values to gamma distribution is an important factor that promotes species coexistence mainly due to the right-skewed character of gamma distribution; (ii) the opposite correlation between species diversity and dispersal implies that any increase of diversity is equivalent to a route of “ecological cooling” whose maximum limit should be constrained by the influence of the third law of thermodynamics; this is in agreement with the well-known asymptotic trend of diversity values in space and time; (iii) there are plausible empirical and theoretical ways to apply physical principles to explain important ecological processes; (iv) the gap between theoretical and empirical ecology in those cases where species diversity is paradoxically high could be narrowed by a wave model of species coexistence based on the concurrency of local equilibrium states. In such a model, competitive exclusion has a limited but indispensable role in harmonious coexistence with functional redundancy. We analyze several literature references as well as ecological and evolutionary examples that support our approach, reinforcing the meaning equivalence between important physical and ecological principles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of atomically precise armchair graphene nanoribbons of width N=7 (7-AGNRs) are investigated by scanning tunneling spectroscopy (STS) on Au(111). We record the standing waves in the local density of states of finite ribbons as a function of sample bias and extract the dispersion relation of frontier electronic states by Fourier transformation. The wave-vector-dependent contributions from these states agree with density functional theory calculations, thus enabling the unambiguous assignment of the states to the valence band, the conduction band, and the next empty band with effective masses of 0.41±0.08me,0.40±0.18me, and 0.20±0.03me, respectively. By comparing the extracted dispersion relation for the conduction band to corresponding height-dependent tunneling spectra, we find that the conduction band edge can be resolved only at small tip-sample separations and has not been observed before. As a result, we report a band gap of 2.37±0.06 eV for 7-AGNRs adsorbed on Au(111).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relativistic version of the Schrödinger equation for a point particle in one dimension with the potential of the first derivative of the delta function. The momentum cutoff regularization is used to study the bound state and scattering states. The initial calculations show that the reciprocal of the bare coupling constant is ultraviolet divergent, and the resultant expression cannot be renormalized in the usual sense, where the divergent terms can just be omitted. Therefore, a general procedure has been developed to derive different physical properties of the system. The procedure is used first in the nonrelativistic case for the purpose of clarification and comparisons. For the relativistic case, the results show that this system behaves exactly like the delta function potential, which means that this system also shares features with quantum filed theories, like being asymptotically free. In addition, in the massless limit, it undergoes dimensional transmutation, and it possesses an infrared conformal fixed point. The comparison of the solution with the relativistic delta function potential solution shows evidence of universality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we make a further step towards a dispersive description of the hadronic light-by-light (HLbL) tensor, which should ultimately lead to a data-driven evaluation of its contribution to (g − 2) μ . We first provide a Lorentz decomposition of the HLbL tensor performed according to the general recipe by Bardeen, Tung, and Tarrach, generalizing and extending our previous approach, which was constructed in terms of a basis of helicity amplitudes. Such a tensor decomposition has several advantages: the role of gauge invariance and crossing symmetry becomes fully transparent; the scalar coefficient functions are free of kinematic singularities and zeros, and thus fulfill a Mandelstam double-dispersive representation; and the explicit relation for the HLbL contribution to (g − 2) μ in terms of the coefficient functions simplifies substantially. We demonstrate explicitly that the dispersive approach defines both the pion-pole and the pion-loop contribution unambiguously and in a model-independent way. The pion loop, dispersively defined as pion-box topology, is proven to coincide exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of pressure-driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure-driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused-silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor-Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection.