92 resultados para developmental deficit
Resumo:
Disturbances in reward processing have been implicated in bulimia nervosa (BN). Abnormalities in processing reward-related stimuli might be linked to dysfunctions of the catecholaminergic neurotransmitter system, but findings have been inconclusive. A powerful way to investigate the relationship between catecholaminergic function and behavior is to examine behavioral changes in response to experimental catecholamine depletion (CD). The purpose of this study was to uncover putative catecholaminergic dysfunction in remitted subjects with BN who performed a reinforcement-learning task after CD. CD was achieved by oral alpha-methyl-para-tyrosine (AMPT) in 19 unmedicated female subjects with remitted BN (rBN) and 28 demographically matched healthy female controls (HC). Sham depletion administered identical capsules containing diphenhydramine. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were reward learning in a probabilistic reward task analyzed using signal-detection theory. Secondary outcome measures included self-report assessments, including the Eating Disorder Examination-Questionnaire. Relative to healthy controls, rBN subjects were characterized by blunted reward learning in the AMPT-but not in placebo-condition. Highlighting the specificity of these findings, groups did not differ in their ability to perceptually distinguish between stimuli. Increased CD-induced anhedonic (but not eating disorder) symptoms were associated with a reduced response bias toward a more frequently rewarded stimulus. In conclusion, under CD, rBN subjects showed reduced reward learning compared with healthy control subjects. These deficits uncover disturbance of the central reward processing systems in rBN related to altered brain catecholamine levels, which might reflect a trait-like deficit increasing vulnerability to BN.
Resumo:
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Resumo:
Developmental dysplasia of the hip (DDH) and acetabular retroversion represent distinct acetabular pathomorphologies. Both are associated with alterations in pelvic morphology. In cases where direct radiographic assessment of the acetabulum is difficult or impossible or in mixed cases of DDH and retroversion, additional indirect pelvimetric parameters would help identify the major underlying structural abnormality.
Resumo:
Codivilla in 1901, Hey Groves in 1926, and Colonna in 1932 described similar capsular arthroplasties--wrapping the capsule around the femoral head and reducing into the true acetabulum--to treat completely dislocated hips in children with dysplastic hips. However, these procedures were associated with relatively high rates of necrosis, joint stiffness, and subsequent revision procedures, and with the introduction of THA, the procedure vanished despite some hips with high functional scores over periods of up to 20 years. Dislocated or subluxated hips nonetheless continue to be seen in adolescents and young adults, and survival curves of THA decrease faster for young patients than for patients older than 60 years. Therefore, joint preservation with capsular arthroplasty may be preferable if function can be restored and complication rates reduced.
Resumo:
Developmental venous anomalies (DVAs) are associated with epileptic seizures; however, the role of DVA in the epileptogenesis is still not established. Simultaneous interictal electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) recordings provide supplementary information to electroclinical data about the epileptic generators, and thus aid in the differentiation of clinically equivocal epilepsy syndromes. The main objective of our study was to characterize the epileptic network in a patient with DVA and epilepsy by simultaneous EEG/fMRI recordings. A 17-year-old woman with recently emerging generalized tonic-clonic seizures, and atypical generalized discharges, was investigated using simultaneous EEG/fMRI at the university hospital. Previous high-resolution MRI showed no structural abnormalities, except a DVA in the right frontal operculum. Interictal EEG recordings showed atypical generalized discharges, corresponding to positive focal blood oxygen level dependent (BOLD) correlates in the right frontal operculum, a region drained by the DVA. Additionally, widespread cortical bilateral negative BOLD correlates in the frontal and parietal lobes were delineated, resembling a generalized epileptic network. The EEG/fMRI recordings support a right frontal lobe epilepsy, originating in the vicinity of the DVA, propagating rapidly to both frontal and parietal lobes, as expressed on the scalp EEG by secondary bilateral synchrony. The DVA may be causative of focal epilepsies in cases where no concomitant epileptogenic lesions can be detected. Advanced imaging techniques, such as simultaneous EEG/fMRI, may thus aid in the differentiation of clinically equivocal epilepsy syndromes.
Resumo:
Adult Alcohol Use Disorders (AUD) patients with Attention Deficit/Hyperactivity Disorder (ADHD) symptoms may suffer more from craving than patients who only have AUD. However, craving may be even more strongly related to withdrawal and psychiatric symptoms; therefore, the association between craving and ADHD may be misinterpreted. The purpose of this study is to examine the association between craving and ADHD symptoms among AUD patients in more detail.
Resumo:
Children with attention-deficit/hyperactivity disorder (ADHD) have a higher rate of obesity than children without ADHD. Obesity risk alleles may overlap with those relevant for ADHD. We examined whether risk alleles for an increased body mass index (BMI) are associated with ADHD and related quantitative traits (inattention and hyperactivity/impulsivity). We screened 32 obesity risk alleles of single nucleotide polymorphisms (SNPs) in a genome-wide association study (GWAS) for ADHD based on 495 patients and 1,300 population-based controls and performed in silico analyses of the SNPs in an ADHD meta-analysis comprising 2,064 trios, 896 independent cases, and 2,455 controls. In the German sample rs206936 in the NUDT3 gene (nudix; nucleoside diphosphate linked moiety X-type motif 3) was associated with ADHD risk (OR: 1.39; P = 3.4 × 10(-4) ; Pcorr = 0.01). In the meta-analysis data we found rs6497416 in the intronic region of the GPRC5B gene (G protein-coupled receptor, family C, group 5, member B; P = 7.2 × 10(-4) ; Pcorr = 0.02) as a risk allele for ADHD. GPRC5B belongs to the metabotropic glutamate receptor family, which has been implicated in the etiology of ADHD. In the German sample rs206936 (NUDT3) and rs10938397 in the glucosamine-6-phosphate deaminase 2 gene (GNPDA2) were associated with inattention, whereas markers in the mitogen-activated protein kinase 5 gene (MAP2K5) and in the cell adhesion molecule 2 gene (CADM2) were associated with hyperactivity. In the meta-analysis data, MAP2K5 was associated with inattention, GPRC5B with hyperactivity/impulsivity and inattention and CADM2 with hyperactivity/impulsivity. Our results justify further research on the elucidation of the common genetic background of ADHD and obesity.
Resumo:
Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder. Genetic loci have not yet been identified by genome-wide association studies. Rare copy number variations (CNVs), such as chromosomal deletions or duplications, have been implicated in ADHD and other neurodevelopmental disorders. To identify rare (frequency 1%) CNVs that increase the risk of ADHD, we performed a whole-genome CNV analysis based on 489 young ADHD patients and 1285 adult population-based controls and identified one significantly associated CNV region. In tests for a global burden of large (>500 kb) rare CNVs, we observed a nonsignificant (P=0.271) 1.126-fold enriched rate of subjects carrying at least one such CNV in the group of ADHD cases. Locus-specific tests of association were used to assess if there were more rare CNVs in cases compared with controls. Detected CNVs, which were significantly enriched in the ADHD group, were validated by quantitative (q)PCR. Findings were replicated in an independent sample of 386 young patients with ADHD and 781 young population-based healthy controls. We identified rare CNVs within the parkinson protein 2 gene (PARK2) with a significantly higher prevalence in ADHD patients than in controls (P=2.8 × 10(-4) after empirical correction for genome-wide testing). In total, the PARK2 locus (chr 6: 162 659 756-162 767 019) harboured three deletions and nine duplications in the ADHD patients and two deletions and two duplications in the controls. By qPCR analysis, we validated 11 of the 12 CNVs in ADHD patients (P=1.2 × 10(-3) after empirical correction for genome-wide testing). In the replication sample, CNVs at the PARK2 locus were found in four additional ADHD patients and one additional control (P=4.3 × 10(-2)). Our results suggest that copy number variants at the PARK2 locus contribute to the genetic susceptibility of ADHD. Mutations and CNVs in PARK2 are known to be associated with Parkinson disease.Molecular Psychiatry advance online publication, 20 November 2012; doi:10.1038/mp.2012.161.
Resumo:
Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also genotyped the DCLK1 region in additional samples of cases with SCZ, BP or ADHD and controls that had not been whole-genome typed. In total, 9895 subjects were analysed, including 5308 normal controls and 4,587 patients (1,125 with SCZ, 2,496 with BP and 966 with ADHD). Several DCLK1 variants were associated with disease phenotypes in the different samples. The main effect was observed for rs7989807 in intron 3, which was strongly associated with SCZ alone and even more so when cases with SCZ and ADHD were combined (P-value = 4 × 10(-5) and 4 × 10(-6), respectively). Associations were also observed with additional markers in intron 3 (combination of SCZ, ADHD and BP), intron 19 (SCZ+BP) and the 3'UTR (SCZ+BP). Our results suggest that genetic variants in DCLK1 are associated with SCZ and, to a lesser extent, with ADHD and BP. Interestingly the association is strongest when SCZ and ADHD are considered together, suggesting common genetic susceptibility. Given that DCLK1 variants were previously found to be associated with cognitive traits, these results are consistent with the role of DCLK1 in neurodevelopment and synaptic plasticity.