66 resultados para crystal structure and molecular dynamics
Resumo:
Glycoprotein Ib (GPIb) is a platelet receptor with a critical role in mediating the arrest of platelets at sites of vascular damage. GPIb binds to the A1 domain of von Willebrand factor (vWF-A1) at high blood shear, initiating platelet adhesion and contributing to the formation of a thrombus. To investigate the molecular basis of GPIb regulation and ligand binding, we have determined the structure of the N-terminal domain of the GPIb(alpha) chain (residues 1-279). This structure is the first determined from the cell adhesion/signaling class of leucine-rich repeat (LRR) proteins and reveals the topology of the characteristic disulfide-bonded flanking regions. The fold consists of an N-terminal beta-hairpin, eight leucine-rich repeats, a disulfide-bonded loop, and a C-terminal anionic region. The structure also demonstrates a novel LRR motif in the form of an M-shaped arrangement of three tandem beta-turns. Negatively charged binding surfaces on the LRR concave face and anionic region indicate two-step binding kinetics to vWF-A1, which can be regulated by an unmasking mechanism involving conformational change of a key loop. Using molecular docking of the GPIb and vWF-A1 crystal structures, we were also able to model the GPIb.vWF-A1 complex.
Resumo:
The first step of coagulation factor XIII (FXIII) activation involves cleavage of the FXIII activation peptide (FXIII-AP) by thrombin. However, it is not known whether the FXIII-AP is released into plasma upon cleavage or remains attached to activated FXIII. The aim of the present work was to study the structure of free FXIII-AP, develop an assay for FXIII-AP determination in human plasma, and to answer the question whether FXIII-AP is released into plasma. We used ab-initio modeling and molecular dynamics simulations to study the structure of free FXIII-AP. We raised monoclonal and polyclonal antibodies against FXIII-AP and developed a highly sensitive and specific ELISA method for direct detection of FXIII-AP in human plasma. Structural analysis showed a putative different conformation of the free FXIII-AP compared to FXIII-AP bound to the FXIII protein. We concluded that it might be feasible to develop specific antibodies against the free FXIII-AP. Using our new FXIII-AP ELISA, we found high levels of FXIII-AP in in-vitro activated plasma samples and serum. We showed for the first time that FXIIIAP is detached from activated FXIII and is released into plasma, where it can be directly measured. Our findings may be of major clinical interest in regard to a possible new marker in thrombotic disease.
Resumo:
Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.