21 resultados para complex variable theory
Resumo:
Based on the Attentional Control Theory (ACT; Eysenck et al., 2007), performance efficiency is decreased in high-anxiety situations because worrying thoughts compete for attentional resources. A repeated-measures design (high/low state anxiety and high/low perceptual task demands) was used to test ACT explanations. Complex football situations were displayed to expert and non-expert football players in a decision making task in a controlled laboratory setting. Ratings of state anxiety and pupil diameter measures were used to check anxiety manipulations. Dependent variables were verbal response time and accuracy, mental effort ratings and visual search behavior (e.g., visual search rate). Results confirmed that an anxiety increase, indicated by higher state-anxiety ratings and larger pupil diameters, reduced processing efficiency for both groups (higher response times and mental effort ratings). Moreover, high task demands reduced the ability to shift attention between different locations for the expert group in the high anxiety condition only. Since particularly experts, who were expected to use more top-down strategies to guide visual attention under high perceptual task demands, showed less attentional shifts in the high compared to the low anxiety condition, as predicted by ACT, anxiety seems to impair the shifting function by interrupting the balance between top-down and bottom-up processes.
Resumo:
In the last decades affine algebraic varieties and Stein manifolds with big (infinite-dimensional) automorphism groups have been intensively studied. Several notions expressing that the automorphisms group is big have been proposed. All of them imply that the manifold in question is an Oka–Forstnerič manifold. This important notion has also recently merged from the intensive studies around the homotopy principle in Complex Analysis. This homotopy principle, which goes back to the 1930s, has had an enormous impact on the development of the area of Several Complex Variables and the number of its applications is constantly growing. In this overview chapter we present three classes of properties: (1) density property, (2) flexibility, and (3) Oka–Forstnerič. For each class we give the relevant definitions, its most significant features and explain the known implications between all these properties. Many difficult mathematical problems could be solved by applying the developed theory, we indicate some of the most spectacular ones.
Resumo:
In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz)6](BF4)2 crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.
Resumo:
Numerical calculations describing weathering of the Poços de Caldas alkaline complex (Minas Gerais, Brazil) by infiltrating groundwater are carried out for time spans up to two million years in the absence of pyrite, and up to 500,000 years with pyrite present. Deposition of uranium resulting from infiltration of oxygenated, uranium bearing groundwater through the hydrothermally altered phonolitic host rock at the Osamu Utsumi uranium mine is also included in the latter calculation. The calculations are based on the quasi-stationary state approximation to mass conservation equations for pure advective transport. This approximation enables the prediction of solute concentrations, mineral abundances and porosity as functions of time and distance over geologic time spans. Mineral reactions are described by kinetic rate laws for both precipitation and dissolution. Homogeneous equilibrium is assumed to be maintained within the aqueous phase. No other constraints are imposed on the calculations other than the initial composition of the unaltered host rock and the composition of the inlet fluid, taken as rainwater modified by percolation through a soil zone. The results are in qualitative agreement with field observations at the Osamu Utsumi uranium mine. They predict a lateritic cover followed by a highly porous saprolitic zone, a zone of oxidized rock with pyrite replaced by iron-hydroxide, a sharp redox front at which uranium is deposited, and the reduced unweathered host rock. Uranium is deposited in a narrow zone located on the reduced side of the redox front in association with pyrite, in agreement with field observations. The calculations predict the formation of a broad dissolution front of primary kaolinite that penetrates deep into the host rock accompanied by the precipitation of secondary illite. Secondary kaolinite occurs in a saprolitic zone near the surface and in the vicinity of the redox front. Gibbsite forms a bi-modal distribution consisting of a maximum near the surface followed by a thin tongue extending downward into the weathered profile in agreement with field observations. The results are found to be insensitive to the kinetic rate constants used to describe mineral reactions.
Resumo:
We have studied the requirements for efficient histone-specific RNA 3' processing in nuclear extract from mammalian tissue culture cells. Processing is strongly impaired by mutations in the pre-mRNA spacer element that reduce the base-pairing potential with U7 RNA. Moreover, by exchanging the hairpin and spacer elements of two differently processed H4 genes, we find that this difference is exclusively due to the spacer element. Finally, processing is inhibited by the addition of competitor RNAs, if these contain a wild-type spacer sequence, but not if their spacer element is mutated. Conversely, the importance of the hairpin for histone RNA 3' processing is highly variable: A hairpin mutant of the H4-12 gene is processed with almost wild-type efficiency in extract from K21 mouse mastocytoma cells but is strongly affected in HeLa cell extract, whereas an identical hairpin mutant of the H4-1 gene is affected in both extracts. The hairpin defect of H4-12-specific RNA in HeLa cells can be overcome by a compensatory mutation that increases the base complementarity to U7 snRNA. Very similar results were also obtained in RNA competition experiments: processing of H4-12-specific RNA can be competed by RNA carrying a wild-type hairpin element in extract from HeLa, but not K21 cells, whereas processing of H4-1-specific RNA can be competed in both extracts. With two additional histone genes we obtained results that were in one case intermediate and in the other similar to those obtained with H4-1. These results suggest that hairpin binding factor(s) can cooperatively support the ability of U7 snRNPs to form an active processing complex, but is(are) not directly involved in the processing mechanism.
Resumo:
Although the recycling of municipal wastewater can play an important role in water supply security and ecosystem protection, the percentage of wastewater recycled is generally low and strikingly variable. Previous research has employed detailed case studies to examine the factors that contribute to recycling success but usually lacks a comparative perspective across cases. In this study, 25 water utilities in New South Wales, Australia, were compared using fuzzy-set Qualitative Comparative Analysis (fsQCA). This research method applies binary logic and set theory to identify the minimal combinations of conditions that are necessary and/or sufficient for an outcome to occur within the set of cases analyzed. The influence of six factors (rainfall, population density, coastal or inland location, proximity to users; cost recovery and revenue for water supply services) was examined for two outcomes, agricultural use and "heavy" (i.e., commercial/municipal/industrial) use. Each outcome was explained by two different pathways, illustrating that different combinations of conditions are associated with the same outcome. Generally, while economic factors are crucial for heavy use, factors relating to water stress and geographical proximity matter most for agricultural reuse. These results suggest that policies to promote wastewater reuse may be most effective if they target uses that are most feasible for utilities and correspond to the local context. This work also makes a methodological contribution through illustrating the potential utility of fsQCA for understanding the complex drivers of performance in water recycling.