60 resultados para compensatory
Resumo:
Inhibitors of angiogenesis and radiation induce compensatory changes in the tumor vasculature both during and after cessation of treatment. In numerous preclinical studies, angiogenesis inhibitors were shown to be efficient in the treatment of many pathological conditions, including solid cancers. In most clinical trials, however, this approach turned out to have no significant effect, especially if applied as monotherapy. Recovery of tumors after therapy is a major problem in the management of cancer patients. The mechanisms underlying tumor recovery (or therapy resistance) have not yet been explicitly elucidated. This review deals with the transient switch from sprouting to intussusceptive angiogenesis, which may be an adaptive response of tumor vasculature to cancer therapy that allows the vasculature to maintain its functional properties. Potential candidates for molecular targeting of this angioadaptive mechanism are yet to be elucidated in order to improve the currently poor efficacy of contemporary antiangiogenic therapies.
Effect of sibling competition and male carotenoid supply on offspring condition and oxidative stress
Resumo:
Early developmental conditions have major implications for an individual's fitness. In species where offspring are born simultaneously, the level of sibling competition for food access is intense. In birds, high sibling competition may subject nestlings to decreased growth rate as a result of limited food and increased levels of oxidative stress through high metabolic activity induced by begging behaviors. We manipulated the level of sibling competition in a natural population of great tits and assessed the consequences for nestling body condition and resistance to oxidative stress. In a full factorial design, we both augmented brood size to increase sibling competition and supplemented the male parents with physiological doses of carotenoids thereby doubling the natural carotenoid intake, aiming at increasing the males' investment in current reproduction and thereby decreasing sibling competition. Nestling body mass was reduced by the brood enlargement and enhanced by the carotenoid supplementation of fathers. Nestling resistance to oxidative stress, measured as total antioxidant defenses in whole blood, was not influenced by the treatments. Because nestlings experience high metabolic activities, an absence of an effect of sibling competition on free radicals production seems unlikely. Nestling body mass decreased and resistance to oxidative stress tended to increase with initial brood size, and hence these correlational effects suggest a trade-off between morphological growth and development of the antioxidant system. However, the result of the experimental treatment did not support this trade-off hypothesis. Alternatively, it suggests that nestling developed compensatory mechanisms that were not detected by our antioxidant capacity measure.
Resumo:
Zebrafish belladonna (bel) mutants carry a mutation in the lhx2 gene that encodes a Lim domain homeobox transcription factor, leading to a defect in the retinotectal axon pathfinding. As a result, a large fraction of homozygous bel mutants is achiasmatic. Achiasmatic bel mutants display ocular motor instabilities, both reserved optokinetic response (OKR) and spontaneous eye oscillations, and an unstable swimming behavior, described as looping. All these unstable behaviors have been linked to the underlying optic nerve projection defect. Looping has been investigated under different visual stimuli and shown to be vision dependent and contrast sensitive. In addition, looping correlates perfectly with reversed OKR and the spontaneous oscillations of the eyes. Hence, it has been hypothesized that looping is a compensatory response to the perception of self-motion induced by the spontaneous eye oscillations. However, both ocular and postural instabilities could also be caused by a yet unidentified vestibular deficit. Here, we performed a preliminary test of the vestibular function in achiasmatic bel larval mutants in order to clarify the potential role of a vestibular deficit in looping. We found that the vestibular ocular reflex (VOR) is normally directed in both bel mutants and wild types and therefore exclude the possibility that nystagmus and looping in reverse to the rotating optokinetic drum can be attributed to an underlying vestibular deficit.
Resumo:
Theta burst stimulation (TBS) is a novel variant of repetitive transcranial magnetic stimulation (rTMS), which induces changes in neuronal excitability persisting up to 1h. When elicited in the primary motor cortex, such physiological modulations might also have an impact on motor behavior. In the present study, we applied TBS in combination with pseudo continuous arterial spin labeling (pCASL) in order to address the question of whether TBS effects are measurable by means of changes in physiological parameters such as cerebral blood flow (CBF) and if TBS-induced plasticity can modify motor behavior. Twelve right-handed healthy subjects were stimulated using an inhibitory TBS protocol at subthreshold stimulation intensity targeted over the right motor cortex. The control condition consisted of within-subject Sham treatment in a crossover design. PCASL was performed before (pre TBS/pre Sham) and immediately after treatment (post TBS/post Sham). During the pCASL runs, the subjects performed a sequential fingertapping task with the left hand at individual maximum speed. There was a significant increase of CBF in the primary motor cortex after TBS, but not after Sham. It is assumed that inhibitory TBS induced a "local virtual lesion" which leads to the mobilization of more neuronal resources. There was no TBS-specific modulation in motor behavior, which might indicate that acute changes in brain plasticity caused by TBS are immediately compensated. This compensatory reaction seems to be observable at the metabolic, but not at the behavioral level.
Resumo:
In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor.
Resumo:
Background The goal of our work was to develop a simple method to evaluate a compensation treatment after unplanned treatment interruptions with respect to their tumour- and normal tissue effect. Methods We developed a software tool in java programming language based on existing recommendations to compensate for treatment interruptions. In order to express and visualize the deviations from the originally planned tumour and normal tissue effects we defined the compensability index. Results The compensability index represents an evaluation of the suitability of compensatory radiotherapy in a single number based on the number of days used for compensation and the preference of preserving the originally planned tumour effect or not exceeding the originally planned normal tissue effect. An automated tool provides a method for quick evaluation of compensation treatments. Conclusions The compensability index calculation may serve as a decision support system based on existing and established recommendations.
Resumo:
The clinical use of anthracyclines in cancer therapy is limited by dose-dependent cardiotoxicity that involves cardiomyocyte injury and death. We have tested the hypothesis that anthracyclines affect protein degradation pathways in adult cardiomyocytes. To this aim, we assessed the effects of doxorubicin (Doxo) on apoptosis, autophagy and the proteasome/ubiquitin system in long-term cultured adult rat cardiomyocytes. Accumulation of poly-ubiquitinated proteins, increase of cathepsin-D-positive lysosomes and myofibrillar degradation were observed in Doxo-treated cardiomyocytes. Chymotrypsin-like activity of the proteasome was initially increased and then inhibited by Doxo over a time-course of 48 h. Proteasome 20S proteins were down-regulated by higher doses of Doxo. The expression of MURF-1, an ubiquitin-ligase specifically targeting myofibrillar proteins, was suppressed by Doxo at all concentrations measured. Microtubule-associated protein 1 light chain 3B (LC3)-positive punctae and both LC3-I and -II proteins were induced by Doxo in a dose-dependent manner, as confirmed by using lentiviral expression of green fluorescence protein bound to LC3 and live imaging. The lysosomotropic drug chloroquine led to autophagosome accumulation, which increased with concomitant Doxo treatment indicating enhanced autophagic flux. We conclude that Doxo causes a downregulation of the protein degradation machinery of cardiomyocytes with a resulting accumulation of poly-ubiquitinated proteins and autophagosomes. Although autophagy is initially stimulated as a compensatory response to cytotoxic stress, it is followed by apoptosis and necrosis at higher doses and longer exposure times. This mechanism might contribute to the late cardiotoxicity of anthracyclines by accelerated aging of the postmitotic adult cardiomyocytes and to the susceptibility of the aging heart to anthracycline cancer therapy.
Resumo:
Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue. Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup. A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.
Resumo:
Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.
Resumo:
Recovery from eye movement deficits after cortical lesions is amazingly rapid and almost complete, which is in sharp contrast to most other neurological deficits of cerebral lesions. The underlying mechanisms of this successful recovery remain uncertain. We had the rare opportunity to examine two patients with recovery from saccade deficits after a lesion restricted to the frontal eye field (FEF) by means of transcranial magnetic stimulation (TMS). The results provide direct evidence that recovery depended on the integrity of the oculomotor regions of the nonlesioned contralesional hemisphere, and that the compensatory network is task-specific.
Resumo:
The human lung is born with a fraction of the adult complement of alveoli. The postnatal stages of human lung development comprise an alveolar stage, a stage of microvascular maturation, and very likely a stage of late alveolarization. The characteristic structural features of the alveolar stage are well known; they are very alike in human and rat lungs. The bases for alveolar formation are represented by immature inter-airspace walls with two capillary layers with a central sheet of connective tissue. Interalveolar septa are formed by folding up of one of the two capillary layers. In the alveolar stage, alveolar formation occurs rapidly and is typically very conspicuous in both species; it has therefore been termed 'bulk alveolarization'. During and after alveolarization the septa with double capillary networks are restructured to the mature form with a single network. This happens in the stage of microvascular maturation. After these steps the lung proceeds to a phase of growth during which capillary growth by intussusception plays an important role in supporting gas exchange. In view of reports that alveoli are added after the stage of microvascular maturation, the question arises whether the present concept of alveolar formation needs revision. On the basis of morphological and experimental findings we can state that mature lungs contain all the features needed for 'late alveolarization' by the classical septation process. Because of the high plasticity of the lung tissues, late alveolarization or some forms of compensatory alveolar formation may be considered for the human lung.
Resumo:
Increased understanding of the hyperdynamic circulation syndrome has resulted in novel therapeutic approaches, some of which have already reached clinical practice. Central to the hyperdynamic circulation syndrome is an imbalance between the increase in different vasodilators (foremost among which is nitric oxide) and the compensatory increase in vasoconstrictors--usually accompanied by a blunted response. This chapter discusses the role of endothelin in the pathogenesis of the syndrome and in future treatment approaches. A relatively new area of research in this field is the role of infection and inflammation in the initiation and maintenance of the hyperdynamic circulation syndrome. The use of antibiotics in the setting of acute variceal bleeding is standard practice. Studies have suggested that chronic manipulation of the intestinal flora could have beneficial effects in the treatment of portal hypertension. The bile salts are another novel and interesting target. Although their vasoactive properties have been known for some time, recent data demonstrate that their effects could be central in the pathogenesis of the hyperdynamic circulation syndrome, and that manipulation of the composition of the bile acid pool could be a therapeutic approach to portal hypertension. Finally, hypoxia and angiogenesis play a role in the development of portal hypertension and the formation of collaterals. This role needs to be further defined but it appears likely that this phenomenon is yet another target for therapeutic intervention.
Resumo:
Mild cognitive impairment (MCI) often refers to the preclinical stage of dementia, where the majority develop Alzheimer's disease (AD). Given that neurodegenerative burden and compensatory mechanisms might exist before accepted clinical symptoms of AD are noticeable, the current prospective study aimed to investigate the functioning of brain regions in the visuospatial networks responsible for preclinical symptoms in AD using event-related functional magnetic resonance imaging (fMRI). Eighteen MCI patients were evaluated and clinically followed for approximately 3 years. Five progressed to AD (PMCI) and eight remained stable (SMCI). Thirteen age-, gender- and education-matched controls also participated. An angle discrimination task with varying task demands was used. Brain activation patterns as well as task demand-dependent and -independent signal changes between the groups were investigated by using an extended general linear model including individual performance (reaction time [RT]) of each single trial. Similar behavioral (RT and accuracy) responses were observed between MCI patients and controls. A network of bilateral activations, e.g. dorsal pathway, which increased linearly with increasing task demand, was engaged in all subjects. Compared with SMCI patients and controls, PMCI patients showed a stronger relation between task demand and brain activity in left superior parietal lobules (SPL) as well as a general task demand-independent increased activation in left precuneus. Altered brain function can be detected at a group level in individuals that progress to AD before changes occur at the behavioral level. Increased parietal activation in PMCI could reflect a reduced neuronal efficacy due to accumulating AD pathology and might predict future clinical decline in patients with MCI.
Resumo:
Ca2+ is essential for numerous physiological functions in our bodies. Therefore, its homeostasis is finely maintained through the coordination of intestinal absorption, renal reabsorption, and bone resorption. The Ca2+-selective epithelial channels TRPV5 and TRPV6 have been identified, and their physiological roles have been revealed: TRPV5 is important in final renal Ca2+ reabsorption, and TRPV6 has a key role in intestinal Ca2+ absorption. The TRPV5 knockout mice exhibit renal leak hypercalciuria and accordingly upregulate their intestinal TRPV6 expression to compensate for their negative Ca2+ balance. In contrast, despite their severe negative Ca2+ balance, TRPV6-null mice do not display any compensatory mechanism, thus resulting in secondary hyperparathyroidism. These results indicate that the genes for TRPV5 and TRPV6 are differentially regulated in human diseases associated with disturbed Ca2+ balance such as hypercalciuria, osteoporosis, and vitamin D-resistant rickets.
Resumo:
Inhibitors of angiogenesis and radiation induce compensatory changes in the tumor vasculature both during and after treatment cessation. To assess the responses to irradiation and vascular endothelial growth factor-receptor tyrosine kinase inhibition (by the vascular endothelial growth factor tyrosine kinase inhibitor PTK787/ZK222854), mammary carcinoma allografts were investigated by vascular casting; electron, light, and confocal microscopy; and immunoblotting. Irradiation and anti-angiogenic therapy had similar effects on the tumor vasculature. Both treatments reduced tumor vascularization, particularly in the tumor medulla. After cessation of therapy, the tumor vasculature expanded predominantly by intussusception with a plexus composed of enlarged sinusoidal-like vessels containing multiple transluminal tissue pillars. Tumor revascularization originated from preserved alpha-smooth muscle actin-positive vessels in the tumor cortex. Quantification revealed that recovery was characterized by an angiogenic switch from sprouting to intussusception. Up-regulated alpha-smooth muscle actin-expression during recovery reflected the recruitment of alpha-smooth muscle actin-positive cells for intussusception as part of the angio-adaptive mechanism. Tumor recovery was associated with a dramatic decrease (by 30% to 40%) in the intratumoral microvascular density, probably as a result of intussusceptive pruning and, surprisingly, with only a minimal reduction of the total microvascular (exchange) area. Therefore, the vascular supply to the tumor was not severely compromised, as demonstrated by hypoxia-inducible factor-1alpha expression. Both irradiation and anti-angiogenic therapy cause a switch from sprouting to intussusceptive angiogenesis, representing an escape mechanism and accounting for the development of resistance, as well as rapid recovery, after cessation of therapy.