28 resultados para cloud computing datacenter performance QoS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Content Distribution Networks are mandatory components of modern web architectures, with plenty of vendors offering their services. Despite its maturity, new paradigms and architecture models are still being developed in this area. Cloud Computing, on the other hand, is a more recent concept which has expanded extremely quickly, with new services being regularly added to cloud management software suites such as OpenStack. The main contribution of this paper is the architecture and the development of an open source CDN that can be provisioned in an on-demand, pay-as-you-go model thereby enabling the CDN as a Service paradigm. We describe our experience with integration of CDNaaS framework in a cloud environment, as a service for enterprise users. We emphasize the flexibility and elasticity of such a model, with each CDN instance being delivered on-demand and associated to personalized caching policies as well as an optimized choice of Points of Presence based on exact requirements of an enterprise customer. Our development is based on the framework developed in the Mobile Cloud Networking EU FP7 project, which offers its enterprise users a common framework to instantiate and control services. CDNaaS is one of the core support components in this project as is tasked to deliver different type of multimedia content to several thousands of users geographically distributed. It integrates seamlessly in the MCN service life-cycle and as such enjoys all benefits of a common design environment, allowing for an improved interoperability with the rest of the services within the MCN ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long Term Evolution (LTE) represents the fourth generation (4G) technology which is capable of providing high data rates as well as support of high speed mobility. The EU FP7 Mobile Cloud Networking (MCN) project integrates the use of cloud computing concepts in LTE mobile networks in order to increase LTE's performance. In this way a shared distributed virtualized LTE mobile network is built that can optimize the utilization of virtualized computing, storage and network resources and minimize communication delays. Two important features that can be used in such a virtualized system to improve its performance are the user mobility and bandwidth prediction. This paper introduces the architecture and challenges that are associated with user mobility and bandwidth prediction approaches in virtualized LTE systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile networks usage rapidly increased over the years, with great consequences in terms of performance requirements. In this paper, we propose mechanisms to use Information-Centric Networking to perform load balancing in mobile networks, providing content delivery over multiple radio technologies at the same time and thus efficiently using resources and improving the overall performance of content transfer. Meaningful results were obtained by comparing content transfer over single radio links with typical strategies to content transfer over multiple radio links with Information-Centric Networking load balancing. Results demonstrate that Information-Centric Networking load balancing increases the performance and efficiency of 3GPP Long Term Evolution mobile networks while greatly improving the network perceived quality for end users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current advanced cloud infrastructure management solutions allow scheduling actions for dynamically changing the number of running virtual machines (VMs). This approach, however, does not guarantee that the scheduled number of VMs will properly handle the actual user generated workload, especially if the user utilization patterns will change. We propose using a dynamically generated scaling model for the VMs containing the services of the distributed applications, which is able to react to the variations in the number of application users. We answer the following question: How to dynamically decide how many services of each type are needed in order to handle a larger workload within the same time constraints? We describe a mechanism for dynamically composing the SLAs for controlling the scaling of distributed services by combining data analysis mechanisms with application benchmarking using multiple VM configurations. Based on processing of multiple application benchmarks generated data sets we discover a set of service monitoring metrics able to predict critical Service Level Agreement (SLA) parameters. By combining this set of predictor metrics with a heuristic for selecting the appropriate scaling-out paths for the services of distributed applications, we show how SLA scaling rules can be inferred and then used for controlling the runtime scale-in and scale-out of distributed services. We validate our architecture and models by performing scaling experiments with a distributed application representative for the enterprise class of information systems. We show how dynamically generated SLAs can be successfully used for controlling the management of distributed services scaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently telecommunication industry benefits from infrastructure sharing, one of the most fundamental enablers of cloud computing, leading to emergence of the Mobile Virtual Network Operator (MVNO) concept. The most momentous intents by this approach are the support of on-demand provisioning and elasticity of virtualized mobile network components, based on data traffic load. To realize it, during operation and management procedures, the virtualized services need be triggered in order to scale-up/down or scale-out/in an instance. In this paper we propose an architecture called MOBaaS (Mobility and Bandwidth Availability Prediction as a Service), comprising two algorithms in order to predict user(s) mobility and network link bandwidth availability, that can be implemented in cloud based mobile network structure and can be used as a support service by any other virtualized mobile network services. MOBaaS can provide prediction information in order to generate required triggers for on-demand deploying, provisioning, disposing of virtualized network components. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operation, as well. Through the preliminary experiments with the prototype implementation on the OpenStack platform, we evaluated and confirmed the feasibility and the effectiveness of the prediction algorithms and the proposed architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of wireless access technologies and mobile devices, together with the constant demand for video services, has created new Human-Centric Multimedia Networking (HCMN) scenarios. However, HCMN poses several challenges for content creators and network providers to deliver multimedia data with an acceptable quality level based on the user experience. Moreover, human experience and context, as well as network information play an important role in adapting and optimizing video dissemination. In this paper, we discuss trends to provide video dissemination with Quality of Experience (QoE) support by integrating HCMN with cloud computing approaches. We identified five trends coming from such integration, namely Participatory Sensor Networks, Mobile Cloud Computing formation, QoE assessment, QoE management, and video or network adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mobile Edge Computing enables the deployment of services, applications, content storage and processing in close proximity to mobile end users. This highly distributed computing environment can be used to provide ultra-low latency, precise positional awareness and agile applications, which could significantly improve user experience. In order to achieve this, it is necessary to consider next-generation paradigms such as Information-Centric Networking and Cloud Computing, integrated with the upcoming 5th Generation networking access. A cohesive end-to-end architecture is proposed, fully exploiting Information-Centric Networking together with the Mobile Follow-Me Cloud approach, for enhancing the migration of content-caches located at the edge of cloudified mobile networks. The chosen content-relocation algorithm attains content-availability improvements of up to 500 when a mobile user performs a request and compared against other existing solutions. The performed evaluation considers a realistic core-network, with functional and non-functional measurements, including the deployment of the entire system, computation and allocation/migration of resources. The achieved results reveal that the proposed architecture is beneficial not only from the users’ perspective but also from the providers point-of-view, which may be able to optimize their resources and reach significant bandwidth savings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a system for performing SLA-driven management and orchestration of distributed infrastructures composed of services supporting mobile computing use cases. In particular, we focus on a Follow-Me Cloud scenario in which we consider mobile users accessing cloud-enable services. We combine a SLA-driven approach to infrastructure optimization, with forecast-based performance degradation preventive actions and pattern detection for supporting mobile cloud infrastructure management. We present our system's information model and architecture including the algorithmic support and the proposed scenarios for system evaluation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers (e.g., MNO, MVNO) move from proprietary and bespoke hardware and software platforms toward an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently created through cloudification by leveraging the existing infrastructure. In this work, we present RANaaS, which is a cloudified radio access network delivered as a service. RANaaS provides the service life-cycle of an ondemand, elastic, and pay as you go 3GPP RAN instantiated on top of the cloud infrastructure. We demonstrate an example of realtime cloudified LTE network deployment using the OpenAirInterface LTE implementation and OpenStack running on commodity hardware as well as the flexibility and performance of the platform developed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increasing interest in autonomous coordinated driving and in proactive safety services, exploiting the wealth of sensing and computing resources which are gradually permeating the urban and vehicular environments, is making provisioning of high levels of QoS in vehicular networks an urgent issue. At the same time, the spreading model of a smart car, with a wealth of infotainment applications, calls for architectures for vehicular communications capable of supporting traffic with a diverse set of performance requirements. So far efforts focused on enabling a single specific QoS level. But the issues of how to support traffic with tight QoS requirements (no packet loss, and delays inferior to 1ms), and of designing a system capable at the same time of efficiently sustaining such traffic together with traffic from infotainment applications, are still open. In this paper we present the approach taken by the CONTACT project to tackle these issues. The goal of the project is to investigate how a VANET architecture, which integrates content-centric networking, software-defined networking, and context aware floating content schemes, can properly support the very diverse set of applications and services currently envisioned for the vehicular environment.