142 resultados para chronic obstructive lung disease
Resumo:
Animal models suggest that reduced nitric oxide (NO) synthase activity results in lower values of exhaled NO (eNO) present at birth in those individuals who are going to develop chronic lung disease of infancy (CLDI). Online tidal eNO was measured in 39 unsedated pre-term infants with CLDI (mean gestational age (GA) 27.3 weeks) in comparison with 23 healthy pre-term (31.6 weeks) and 127 term infants (39.9 weeks) at 44 weeks post-conceptional age, thus after the main inflammatory response. NO output (NO output (V'(NO)) = eNO x flow) was calculated to account for tidal- flow-related changes. Sex, maternal atopic disease and environmental factors (smoking, caffeine) were controlled for. The mean eNO was not different (14.9 ppb in all groups) but V'(NO) was lower in CLDI compared with healthy term infants (0.52 versus 0.63 nL x s(-1)). Values for healthy pre-term infants were between these two groups (0.58 nL x s(-1)). Within all pre-term infants (n = 62), V'(NO) was reduced in infants with low GA, high clinical risk index for babies scores and longer duration of oxygen therapy but not associated with post-natal factors, such as ventilation or corticosteroid treatment. After accounting for flow, the lower nitric oxide output in premature infants with chronic lung disease of infancy is consistent with the hypothesis of nitric oxide metabolism being involved in chronic lung disease of infancy.
Resumo:
This paper is the fourth in a series of reviews that will summarize available data and critically discuss the potential role of lung-function testing in infants with acute neonatal respiratory disorders and chronic lung disease of infancy. The current paper addresses information derived from tidal breathing measurements within the framework outlined in the introductory paper of this series, with particular reference to how these measurements inform on control of breathing. Infants with acute and chronic respiratory illness demonstrate differences in tidal breathing and its control that are of clinical consequence and can be measured objectively. The increased incidence of significant apnea in preterm infants and infants with chronic lung disease, together with the reportedly increased risk of sudden unexplained death within the latter group, suggests that control of breathing is affected by both maturation and disease. Clinical observations are supported by formal comparison of tidal breathing parameters and control of breathing indices in the research setting.
Resumo:
BACKGROUND: The question whether patients suffering from end-stage emphysema who are candidates for lung transplantation should be treated with a single lung or with a double lung transplantation is still unanswered. METHODS: We reviewed 24 consecutive lung transplant procedures, comparing the results of 6 patients with an unilateral and 17 with a bilateral transplantation. PATIENTS AND RESULTS: After bilateral transplantation the patients showed a trend towards better blood gas exchange with shorter time on ventilator and intensive care compared patients after unilateral procedure. Three-year-actuarial survival was higher in the group after bilateral transplantation (83% versus 67%). There was a continuous improvement in pulmonary function in both groups during the first months after transplantation. Vital capacity and forced exspiratory ventilation therapies during the first second were significantly higher in the bilateral transplant group. CONCLUSION: Both unilateral and bilateral transplantation are feasible for patients with end-stage emphysema. Bilateral transplantation results in better pulmonary reserve capacity and faster rehabilitation.
Resumo:
BACKGROUND: The surfactant proteins B (SP-B) and C (SP-C) are important for the stability and function of the alveolar surfactant film. Their involvement and down-regulation in inflammatory processes has recently been proposed, but their level during neutrophilic human airway diseases are not yet known. METHODS: We used 1D-electrophoresis and Western blotting to determine the concentrations and molecular forms of SP-B and SP-C in bronchoalveolar lavage (BAL) fluid of children with different inflammatory airway diseases. 21 children with cystic fibrosis, 15 with chronic bronchitis and 14 with pneumonia were included and compared to 14 healthy control children. RESULTS: SP-B was detected in BAL of all 64 patients, whereas SP-C was found in BAL of all but 3 children; those three BAL fluids had more than 80% neutrophils, and in two patients, who were re-lavaged later, SP-C was then present and the neutrophil count was lower. SP-B was mainly present as a dimer, SP-C as a monomer. For both qualitative and quantitative measures of SP-C and SP-B, no significant differences were observed between the four evaluated patient groups. CONCLUSION: Concentration or molecular form of SP-B and SP-C is not altered in BAL of children with different acute and chronic inflammatory lung diseases. We conclude that there is no down-regulation of SP-B and SP-C at the protein level in inflammatory processes of neutrophilic airway disease.
Resumo:
Stenotrophomonas maltophilia (S. maltophilia) is a nonfermentative bacterium, which is naturally resistant against a panel of commonly-used antibiotics. It is frequently isolated from humans with chronic respiratory disease, e.g. cystic fibrosis or chronic obstructive pulmonary disease. In veterinary medicine S. maltophilia is perceived to be a mere coloniser. We herewith report 7 strains of S. maltophilia isolated from animals, of which 5 strains were harvested from 3 horses, a dog and a cat with chronic respiratory disease. The dog isolate showed resistance to trimethoprim / sulphamethoxazole, which was confirmed by detection of the sul 1 gene. Analysis with pulsed field gel electrophoresis revealed that 2 horses, which were boarded in the same clinic but two years apart, harboured the same strain of S. maltophilia. This is indicative of a hospital acquired colonisation / infection, which contradicts involvement in the pre-existing chronic disease.
Resumo:
Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJ
Resumo:
BACKGROUND To systematically assess the literature published on the clinical impact of Influenza A(H1N1)pdm09 on cystic fibrosis (CF) patients. METHODS An online search in PUBMED database was conducted. Original articles on CF patients with Influenza A(H1N1)pdm09 infection were included. We analyzed incidence, symptoms, clinical course and treatment. RESULTS Four surveys with a total of 202 CF patients infected by Influenza A(H1N1)pdm09 were included. The meta-analysis showed that hospitalisation rates were higher in CF patients compared to the general population. While general disease symptoms were comparable, the clinical course was more severe and case fatality rate (CFR) was higher in CF patients compared to asthmatics and the general population. CONCLUSIONS Evidence so far suggests that CF patients infected with Influenza A(H1N1)pdm09 show increased morbidity and a higher CFR compared to patients with other chronic respiratory diseases and healthy controls. Particularly, CF patients with advanced stage disease seem to be more susceptible to severe lung disease. Accordingly, early antiviral and antibiotic treatment strategies are essential in CF patients. Preventive measures, including vaccination as well as hygiene measures during the influenza season, should be reinforced and improved in CF patients.
Resumo:
Pneumonia is a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD). Although most COPD patients are smokers, the effects of cigarette smoke exposure on clearance of lung bacterial pathogens and on immune and inflammatory responses are incompletely defined. Here, clearance of Streptococcus pneumoniae and Pseudomonas aeruginosa and associated immune responses were examined in mice exposed to cigarette smoke or following smoking cessation. Mice exposed to cigarette smoke for 6 weeks or 4 months demonstrated decreased lung bacterial burden compared to air-exposed mice when infected 16-24 hours post-exposure. When infection was performed after smoke cessation, bacterial clearance kinetics of mice previously exposed to smoke reversed to comparable levels as those of control mice suggesting that the observed defects were not dependent on adaptive immunological memory to bacterial determinants found in smoke. Comparing cytokine levels and myeloid cell production prior to infection in mice exposed to cigarette smoke relative to mice never exposed or following smoke cessation revealed that reduced bacterial burden was most strongly associated with higher levels of IL-1β and GM-CSF in the lungs and with increased neutrophil reserve and monocyte turnover in the bone marrow. Using serpinb1a-deficient mice with reduced neutrophil numbers and treatment with G-CSF showed that increased neutrophil numbers contribute only in part to the effect of smoke on infection. Our findings indicate that cigarette smoke induces a temporary and reversible increase in clearance of lung pathogens, which correlates with local inflammation and increased myeloid cell output from the bone marrow.
Resumo:
RATIONALE Changes in the pulmonary microbiota are associated with progressive respiratory diseases including chronic obstructive pulmonary disease. Whether there is a causal relationship between these changes and disease progression remains unknown. OBJECTIVE To investigate the link between an altered microbiota and disease, we utilized a model of chronic lung inflammation in specific pathogen free (SPF) mice and mice depleted of microbiota by antibiotic treatment or devoid of a microbiota (axenic). METHODS Mice were challenged with LPS/elastase intranasally over 4 weeks, resulting in a chronically inflamed and damaged lung. The ensuing cellular infiltration, histological damage and decline in lung function were quantified. MEASUREMENTS AND MAIN RESULTS Similar to human disease, the composition of the pulmonary microbiota was altered in disease animals. We found that the microbiota richness and diversity were decreased in LPS/Elastase-treated mice, with an increased representation of the genera Pseudomonas, Lactobacillus and a reduction in Prevotella. Moreover, the microbiota was implicated in disease development as mice depleted of microbiota exhibited an improvement in lung function, reduction in airway inflammation, decrease in lymphoid neogenesis and auto-reactive antibody responses. The absence of microbial cues also markedly decreased the production of IL-17A, whilst intranasal transfer of fluid enriched with the pulmonary microbiota isolated from diseased mice enhanced IL-17A production in the lungs of antibiotic treated or axenic recipients. Finally, in mice harboring a microbiota, neutralizing IL-17A dampened inflammation and restored lung function. CONCLUSIONS Collectively, our data indicate that host-microbial cross-talk promotes inflammation and could underlie the chronicity of inflammatory lung diseases.
Resumo:
BACKGROUND/AIMS The use of antihypertensive medicines has been shown to reduce proteinuria, morbidity, and mortality in patients with chronic kidney disease (CKD). A specific recommendation for a class of antihypertensive drugs is not available in this population, despite the pharmacodynamic differences. We have therefore analysed the association between antihypertensive medicines and survival of patients with chronic kidney disease. METHODS Out of 2687 consecutive patients undergoing kidney biopsy a cohort of 606 subjects with retrievable medical therapy was included into the analysis. Kidney function was assessed by glomerular filtration rate (GFR) estimation at the time point of kidney biopsy. Main outcome variable was death. RESULTS Overall 114 (18.7%) patients died. In univariate regression analysis the use of alpha-blockers and calcium channel antagonists, progression of disease, diabetes mellitus (DM) type 1 and 2, arterial hypertension, coronary heart disease, peripheral vascular disease, male sex and age were associated with mortality (all p<0.05). In a multivariate Cox regression model the use of calcium channel blockers (HR 1.89), age (HR 1.04), DM type 1 (HR 8.43) and DM type 2 (HR 2.17) and chronic obstructive pulmonary disease (HR 1.66) were associated with mortality (all p < 0.05). CONCLUSION The use of calcium channel blockers but not of other antihypertensive medicines is associated with mortality in primarily GN patients with CKD.
Resumo:
SerpinB1 is a clade B serpin, or ov-serpin, found at high levels in the cytoplasm of neutrophils. SerpinB1 inhibits neutrophil serine proteases, which are important in killing microbes. When released from granules, these potent enzymes also destroy host proteins and contribute to morbidity and mortality in inflammatory diseases including emphysema, chronic obstructive pulmonary disease, cystic fibrosis, arthritis, and sepsis. Studies of serpinB1-deficient mice have established a crucial role for this serpin in Pseudomonas aeruginosa infection by preserving lung antimicrobial proteins from proteolysis and by protecting lung-recruited neutrophils from a premature death. SerpinB1⁻/⁻ mice also have a severe defect in the bone marrow reserve of mature neutrophils demonstrating a key role for serpinB1 in cellular homeostasis. Here, key methods used to generate and characterize serpinB1⁻/⁻ mice are described including intranasal inoculation, myeloperoxidase activity, flow cytometry analysis of bone marrow myeloid cells, and elastase activity. SerpinB1-knockout mice provide a model to dissect the pathogenesis of inflammatory disease characterized by protease:antiprotease imbalance and may be used to assess the efficacy of therapeutic compounds.
Resumo:
Cystic fibrosis (CF) is characterized by bronchoalveolar neutrophilia and submucosal lymphocytosis. We hypothesized that Th17 lymphocytes are part of this submucosal infiltrate.
Resumo:
We prospectively investigated the potential of positron emission tomography (PET) using the somatostatin receptor (SSTR) analogue ⁶⁸Ga-DOTATATE and 2-deoxy-2[¹⁸F]fluoro-D-glucose (¹⁸F-FDG) in diffuse parenchymal lung disease (DPLD). Twenty-six patients (mean age 68.9 ± 11.0 years) with DPLD were recruited for ⁶⁸Ga-DOTATATE and ¹⁸F-FDG combined PET/high-resolution computed tomography (HRCT) studies. Ten patients had idiopathic pulmonary fibrosis (IPF), 12 patients had nonspecific interstitial pneumonia (NSIP), and 4 patients had other forms of DPLD. Using PET, the pulmonary tracer uptake (maximum standardized uptake value [SUV(max)]) was calculated. The distribution of PET tracer was compared to the distribution of lung parenchymal changes on HRCT. All patients demonstrated increased pulmonary PET signal with ⁶⁸Ga-DOTATATE and ¹⁸F-FDG. The distribution of parenchymal uptake was similar, with both tracers corresponding to the distribution of HRCT changes. The mean SUV(max) was 2.2 ± 0.7 for ⁶⁸Ga-DOTATATE and 2.8 ± 1.0 (t-test, p = .018) for ¹⁸F-FDG. The mean ⁶⁸Ga-DOTATATE SUV(max) in IPF patients was 2.5 ± 0.9, whereas it was 2.0 ± 0.7 (p = .235) in NSIP patients. The correlation between ⁶⁸Ga-DOTATATE SUV(max) and gas transfer (transfer factor of the lung for carbon monoxide [TLCO]) was r = -.34 (p = .127) and r = -.49 (p = .028) between ¹⁸F-FDG SUV(max) and TLCO. We provide noninvasive in vivo evidence in humans showing that SSTRs may be detected in the lungs of patients with DPLD in a similar distribution to sites of increased uptake of ¹⁸F-FDG on PET.
Resumo:
In cystic fibrosis (CF), tests for ventilation inhomogeneity are sensitive but not established for clinical routine. We assessed feasibility of a new double-tracer gas single-breath washout (SBW) in school-aged children with CF and control subjects, and compared SBW between groups and with multiple-breath nitrogen washout (MBNW). Three SBW and MBNW were performed in 118 children (66 with CF) using a side-stream ultrasonic flowmeter setup. The double-tracer gas containing 5% sulfur hexafluoride and 26.3% helium was applied during one tidal breath. Outcomes were SBW phase III slope (SIII(DTG)), MBNW-derived lung clearance index (LCI), and indices of acinar (S(acin)) and conductive (S(cond)) ventilation inhomogeneity. SBW took significantly less time to perform than MBNW. SBW and MBNW were feasible in 109 (92.4%) and 98 (83.0%) children, respectively. SIII(DTG) differed between children with CF and controls, mean±sd was -456.7±492.8 and -88.4±129.1 mg·mol·L(-1), respectively. Abnormal SIII(DTG) was present in 36 (59%) children with CF. SIII(DTG) was associated with LCI (r= -0.58) and S(acin) (r= -0.58), but not with S(cond). In CF, steeply sloping SIII(DTG) potentially reflects ventilation inhomogeneity near the acinus entrance. This tidal SBW is a promising test to assess ventilation inhomogeneity in an easy and fast way.