22 resultados para chemotherapeutic agents
Resumo:
The cytokine tumor-necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) has been shown to preferentially induce apoptosis in cancer cells. A previous study of our group demonstrated that non-small cell lung cancer cell lines can be sensitized to Apo2L/TRAIL-induced apoptosis by chemotherapeutic agents. The aim of the present study was the evaluation of these results in a model of primary culture of non-small cell lung cancer.
Resumo:
BACKGROUND: Human African trypanosomiasis (HAT), a major parasitic disease spread in Africa, urgently needs novel targets and new efficacious chemotherapeutic agents. Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) exhibits specific antitrypanosomal activity with an IC(50) of 1.0 microM on Trypanosoma brucei rhodesiense (T. b. rhodesiense), the causative agent of the acute form of HAT. METHODOLOGY/PRINCIPAL FINDINGS: In this work we show adenosine kinase of T. b. rhodesiense (TbrAK), a key enzyme of the parasite purine salvage pathway which is vital for parasite survival, to be the putative intracellular target of compound 1 using a chemical proteomics approach. This finding was confirmed by RNA interference experiments showing that down-regulation of adenosine kinase counteracts compound 1 activity. Further chemical validation demonstrated that compound 1 interacts specifically and tightly with TbrAK with nanomolar affinity, and in vitro activity measurements showed that compound 1 is an enhancer of TbrAK activity. The subsequent kinetic analysis provided strong evidence that the observed hyperactivation of TbrAK is due to the abolishment of the intrinsic substrate-inhibition. CONCLUSIONS/SIGNIFICANCE: The results suggest that TbrAK is the putative target of this compound, and that hyperactivation of TbrAK may represent a novel therapeutic strategy for the development of trypanocides.
Resumo:
In hormone refractory prostatic carcinoma (HRPCa), the majority of patients have bone metastases only, which are by definition non-measurable. This makes objective evaluation of chemotherapeutic agents difficult. Prostate specific antigen (PSA) as a dynamic model was analyzed as potential auxiliary end point in HRPCa.
Resumo:
During the last decade, the development of anticancer therapies has focused on targeting neoplastic-related metabolism. Cancer cells display a variety of changes in their metabolism, which enable them to satisfy the high bioenergetic and biosynthetic demands for rapid cell division. One of the crucial alterations is referred to as the "Warburg effect", which involves a metabolic shift from oxidative phosphorylation towards the less efficient glycolysis, independent of the presence of oxygen. Although there are many examples of solid tumors having altered metabolism with high rates of glucose uptake and glycolysis, it was only recently reported that this phenomenon occurs in hematological malignancies. This review presents evidence that targeting the glycolytic pathway at different levels in hematological malignancies can inhibit cancer cell proliferation by restoring normal metabolic conditions. However, to achieve cancer regression, high concentrations of glycolytic inhibitors are used due to limited solubility and biodistribution, which may result in toxicity. Besides using these inhibitors as monotherapies, combinatorial approaches using standard chemotherapeutic agents could display enhanced efficacy at eradicating malignant cells. The identification of the metabolic enzymes critical for hematological cancer cell proliferation and survival appears to be an interesting new approach for the targeted therapy of hematological malignancies.
Resumo:
Oligonucleotides comprising unnatural building blocks, which interfere with the translation machinery, have gained increased attention for the treatment of gene-related diseases (e.g. antisense, RNAi). Due to structural modifications, synthetic oligonucleotides exhibit increased biostability and bioavailability upon administration. Consequently, classical enzyme-based sequencing methods are not applicable to their sequence elucidation and verification. Tandem mass spectrometry is the method of choice for performing such tasks, since gas-phase dissociation is not restricted to natural nucleic acids. However, tandem mass spectrometric analysis can generate product ion spectra of tremendous complexity, as the number of possible fragments grows rapidly with increasing sequence length. The fact that structural modifications affect the dissociation pathways greatly increases the variety of analytically valuable fragment ions. The gas-phase dissociation of oligonucleotides is characterized by the cleavage of one of the four bonds along the phosphodiester chain, by the accompanying loss of nucleases, and by the generation of internal fragments due to secondary backbone cleavage. For example, an 18-mer oligonucleotide yields a total number of 272’920 theoretical fragment ions. In contrast to the processing of peptide product ion spectra, which nowadays is highly automated, there is a lack of tools assisting the interpretation of oligonucleotide data. The existing web-based and stand-alone software applications are primarily designed for the sequence analysis of natural nucleic acids, but do not account for chemical modifications and adducts. Consequently, we developed a software to support the interpretation of mass spectrometric data of natural and modified nucleic acids and their adducts with chemotherapeutic agents.
Resumo:
Nucleic acids play key roles in the storage and processing of genetic information, as well as in the regulation of cellular processes. Consequently, they represent attractive targets for drugs against gene-related diseases. On the other hand, synthetic oligonucleotide analogues have found application as chemotherapeutic agents targeting cellular DNA and RNA. The development of effective nucleic acid-based chemotherapeutic strategies requires adequate analytical techniques capable of providing detailed information about the nucleotide sequences, the presence of structural modifications, the formation of higher-order structures, as well as the interaction of nucleic acids with other cellular components and chemotherapeutic agents. Due to the impressive technical and methodological developments of the past years, tandem mass spectrometry has evolved to one of the most powerful tools supporting research related to nucleic acids. This review covers the literature of the past decade devoted to the tandem mass spectrometric investigation of nucleic acids, with the main focus on the fundamental mechanistic aspects governing the gas-phase dissociation of DNA, RNA, modified oligonucleotide analogues, and their adducts with metal ions. Additionally, recent findings on the elucidation of nucleic acid higher-order structures by tandem mass spectrometry are reviewed.
Resumo:
Trypanosoma brucei rhodesiense and T. b. gambiense are the causative agents of sleeping sickness, a fatal disease that affects 36 countries in sub-Saharan Africa. Nevertheless, only a handful of clinically useful drugs are available. These drugs suffer from severe side-effects. The situation is further aggravated by the alarming incidence of treatment failures in several sleeping sickness foci, apparently indicating the occurrence of drug-resistant trypanosomes. Because of these reasons, and since vaccination does not appear to be feasible due to the trypanosomes' ever changing coat of variable surface glycoproteins (VSGs), new drugs are needed urgently. The entry of Trypanosoma brucei into the post-genomic age raises hopes for the identification of novel kinds of drug targets and in turn new treatments for sleeping sickness. The pragmatic definition of a drug target is, a protein that is essential for the parasite and does not have homologues in the host. Such proteins are identified by comparing the predicted proteomes of T. brucei and Homo sapiens, then validated by large-scale gene disruption or gene silencing experiments in trypanosomes. Once all proteins that are essential and unique to the parasite are identified, inhibitors may be found by high-throughput screening. However powerful, this functional genomics approach is going to miss a number of attractive targets. Several current, successful parasiticides attack proteins that have close homologues in the human proteome. Drugs like DFMO or pyrimethamine inhibit parasite and host enzymes alike--a therapeutic window is opened only by subtle differences in the regulation of the targets, which cannot be recognized in silico. Working against the post-genomic approach is also the fact that essential proteins tend to be more highly conserved between species than non-essential ones. Here we advocate drug targeting, i.e. uptake or activation of a drug via parasite-specific pathways, as a chemotherapeutic strategy to selectively inhibit enzymes that have equally sensitive counterparts in the host. The T. brucei purine salvage machinery offers opportunities for both metabolic and transport-based targeting: unusual nucleoside and nucleobase permeases may be exploited for selective import, salvage enzymes for selective activation of purine antimetabolites.