49 resultados para cell response
Human leukocyte antigens (HLA) associated drug hypersensitivity: consequences of drug binding to HLA
Resumo:
Recent publications have shown that certain human leukocyte antigen (HLA) alleles are strongly associated with hypersensitivity to particular drugs. As HLA molecules are a critical element in T-cell stimulation, it is no surprise that particular HLA alleles have a direct functional role in the pathogenesis of drug hypersensitivity. In this context, a direct interaction of the relevant drug with HLA molecules as described by the p-i concept appears to be more relevant than presentation of hapten-modified peptides. In some HLA-associated drug hypersensitivity reactions, the presence of a risk allele is a necessary but incomplete factor for disease development. In carbamazepine and HLA-B*15:02, certain T-cell receptor (TCR) repertoires are required for immune activation. This additional requirement may be one of the 'missing links' in explaining why most individuals carrying this allele can tolerate the drug. In contrast, abacavir generates polyclonal T-cell response by interacting specifically with HLA-B*57:01 molecules. T cell stimulation may be due to presentation of abacavir or of altered peptides. While the presence of HLA-B*58:01 allele substantially increases the risk of allopurinol hypersensitivity, it is not an absolute requirement, suggesting that other factors also play an important role. In summary, drug hypersensitivity is the end result of a drug interaction with certain HLA molecules and TCRs, the sum of which determines whether the ensuing immune response is going to be harmful or not.
Resumo:
BACKGROUND AND PURPOSE: Extracellular nucleotides act as potent mitogens for renal mesangial cells (MC). In this study we determined whether extracellular nucleotides trigger additional responses in MCs and the mechanisms involved. EXPERIMENTAL APPROACH: MC migration was measured after nucleotide stimulation in an adapted Boyden-chamber. Sphingosine kinase-1 (SK-1) protein expression was detected by Western blot analysis and mRNA expression quantified by real-time PCR. SK activity was measured by an in vitro kinase assay using sphingosine as substrate. KEY RESULTS: Nucleotide stimulation caused biphasic activation of SK-1, but not SK-2. The first peak occurred after minutes of stimulation and was followed by a second delayed peak after 4-24 h of stimulation. The delayed activation of SK-1 is due to increased SK-1 mRNA steady-state levels and de novo synthesis of SK-1 protein, and depends on PKC and the classical MAPK cascade. To see whether nucleotide-stimulated cell responses require SK-1, we selectively depleted SK-1 from cells by using small-interference RNA (siRNA). MC migration is highly stimulated by ATP and UTP; this is mimicked by exogenously added S1P. Depletion of SK-1 by siRNA drastically reduced the effect of ATP and UTP on cell migration but not on cell proliferation. Furthermore, MCs isolated from SK-1-deficient mice were completely devoid of nucleotide-induced migration. CONCLUSIONS AND IMPLICATIONS: These data show that extracellular nucleotides besides being mitogenic also trigger MC migration and this cell response critically requires SK-1 activity. Thus, pharmacological intervention of SK-1 may have impacts on situations where MC migration is important such as during inflammatory kidney diseases.
Resumo:
BACKGROUND: T-cell-mediated hypersensitivity is a rare but serious manifestation of drug therapy. OBJECTIVES: To explore the mechanisms of drug presentation to T cells and the possibility that generation of metabolite-specific T cells may provoke cross-sensitization between drugs. METHODS: A lymphocyte transformation test was performed on 13 hypersensitive patients with carbamazepine, oxcarbazepine, and carbamazepine metabolites. Serial dilution experiments were performed to generate drug (metabolite)-specific T-cell clones to explore the structural basis of the T-cell response and mechanisms of antigen presentation. 3-Dimensional energy-minimized structures were generated by using computer modeling. The role of drug metabolism was analyzed with 1-aminobenzotriazole. RESULTS: Lymphocytes and T-cell clones proliferated with carbamazepine, oxcarbazepine, and some (carbamazepine 10,11 epoxide, 10-hydroxy carbamazepine) but not all stable carbamazepine metabolites. Structure activity studies using 29 carbamazepine (metabolite)-specific T-cell clones revealed 4 patterns of drug recognition, which could be explained by generation of preferred 3-dimensional structural conformations. T cells were stimulated by carbamazepine (metabolites) bound directly to MHC in the absence of processing. The activation threshold for T-cell proliferation varied between 5 minutes and 4 hours. 1-Aminobenzotriazole, which inhibits cytochrome P450 activity, did not prevent carbamazepine-related T-cell proliferation. Substitution of the terminal amine residue of carbamazepine with a methyl group diminished T-cell proliferation. CONCLUSION: These data show that carbamazepine and certain stable carbamazepine metabolites stimulate T cells rapidly via a direct interaction with MHC and specific T-cell receptors. CLINICAL IMPLICATIONS: Some patients with a history of carbamazepine hypersensitivity possess T cells that cross-react with oxcarbazepine, providing a rationale for cross-sensitivity between the 2 drugs.
Resumo:
Sphingosylphosphorylcholine (SPC) is a bioactive lipid that binds to G protein-coupled-receptors and activates various signaling cascades. Here, we show that in renal mesangial cells, SPC not only activates various protein kinase cascades but also activates Smad proteins, which are classical members of the transforming growth factor-beta (TGFbeta) signaling pathway. Consequently, SPC is able to mimic TGFbeta-mediated cell responses, such as an anti-inflammatory and a profibrotic response. Interleukin-1beta-stimulated prostaglandin E(2) formation is dose-dependently suppressed by SPC, which is paralleled by reduced secretory phospholipase A(2) (sPLA(2)) protein expression and activity. This effect is due to a reduction of sPLA(2) mRNA expression caused by inhibited sPLA(2) promoter activity. Furthermore, SPC upregulates the profibrotic connective tissue growth factor (CTGF) protein and mRNA expression. Blocking TGFbeta signaling by a TGFbeta receptor kinase inhibitor causes an inhibition of SPC-stimulated Smad activation and reverses both the negative effect of SPC on sPLA(2) expression and the positive effect on CTGF expression. In summary, our data show that SPC, by mimicking TGFbeta, leads to a suppression of proinflammatory mediator production and stimulates a profibrotic cell response that is often the end point of an anti-inflammatory reaction. Thus, targeting SPC receptors may represent a novel therapeutic strategy to cope with inflammatory diseases.
Resumo:
BACKGROUND: CD4+ T cell help is critical in maintaining antiviral immune responses and such help has been shown to be sustained in acute resolving hepatitis C. In contrast, in evolving chronic hepatitis C CD4+ T cell helper responses appear to be absent or short-lived, using functional assays. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a novel HLA-DR1 tetramer containing a highly targeted CD4+ T cell epitope from the hepatitis C virus non-structural protein 4 to track number and phenotype of hepatitis C virus specific CD4+ T cells in a cohort of seven HLA-DR1 positive patients with acute hepatitis C in comparison to patients with chronic or resolved hepatitis C. We observed peptide-specific T cells in all seven patients with acute hepatitis C regardless of outcome at frequencies up to 0.65% of CD4+ T cells. Among patients who transiently controlled virus replication we observed loss of function, and/or physical deletion of tetramer+ CD4+ T cells before viral recrudescence. In some patients with chronic hepatitis C very low numbers of tetramer+ cells were detectable in peripheral blood, compared to robust responses detected in spontaneous resolvers. Importantly we did not observe escape mutations in this key CD4+ T cell epitope in patients with evolving chronic hepatitis C. CONCLUSIONS/SIGNIFICANCE: During acute hepatitis C a CD4+ T cell response against this epitope is readily induced in most, if not all, HLA-DR1+ patients. This antiviral T cell population becomes functionally impaired or is deleted early in the course of disease in those where viremia persists.
Resumo:
L-selectin has been suggested to play a role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Here we demonstrate that L-selectin(-/-) SJL mice are susceptible to proteolipid protein (PLP)-induced EAE because the compromised antigen-specific T cell proliferation in peripheral lymph nodes is fully compensated by the T cell response raised in their spleen. Transfer of PLP-specific T cells into syngeneic recipients induced EAE independent of the presence or absence of L-selectin on PLP-specific T cells or in the recipient. Leukocyte infiltration into the central nervous system parenchyma was detectable independent of the mode of disease induction and the presence or absence of L-selectin. In addition, we found L-selectin(-/-) C57BL/6 mice to be susceptible to myelin oligodendrocyte glycoprotein-induced EAE. Taken together, we demonstrate that in SJL and C57BL/6 mice L-selectin is not required for EAE pathogenesis. The apparent discrepancy of our present observation to previous findings, demonstrating a role of L-selectin in EAE pathogenesis in C57BL/6 mice or myelin-basic protein (MBP)-specific TCR-transgenic B10.PL mice, may be attributed to background genes rather than L-selectin and to a unique role of L-selectin in EAE pathogenesis in MBP-TCR-transgenic mice.
Resumo:
To study the specific role of transmembrane tumor necrosis factor (tmTNF) in protective and pathological responses against the gastrointestinal helminth Trichinella spiralis, we compared the immune responses of TNF-alpha/lymphotoxin alpha (LTalpha)(-/-) mice expressing noncleavable transgenic tmTNF to those of TNF-alpha/LTalpha(-/-) and wild-type mice. The susceptibility of TNF-alpha/LTalpha(-/-) mice to T. spiralis infection was associated with impaired induction of a protective Th2 response and the lack of mucosal mastocytosis. Although tmTNF-expressing transgenic (tmTNF-tg) mice also had a reduced Th2 response, the mast cell response was greater than that observed in TNF-alpha/LTalpha(-/-) mice and was sufficient to induce the expulsion of the parasite. T. spiralis infection of tmTNF-tg mice resulted in significant intestinal pathology characterized by villus atrophy and crypt hyperplasia comparable to that induced following the infection of wild-type mice, while pathology in TNF-alpha/LTalpha(-/-) mice was significantly reduced. Our data thus indicate a role for tmTNF in host defense against gastrointestinal helminths and in the accompanying enteropathy. Furthermore, they also demonstrate that TNF-alpha is required for the induction of Th2 immune responses related to infection with gastrointestinal helminth parasites.
Resumo:
PURPOSE OF REVIEW: Therapeutic inhibition of tumour necrosis factor-alpha strongly increases the risk of reactivation in latent tuberculosis infection. Recent blood tests based on antigen-specific T cell response and measuring production of interferon-gamma, so called interferon-gamma release assays (IGRAs), are promising novel tools to identify infected patients. The performance of diagnostic testing for latent tuberculosis infection in patients with rheumatic diseases will be discussed. RECENT FINDINGS: In patients with rheumatoid arthritis, IGRAs are more sensitive and more specific than traditional tuberculin skin testing. They are unaffected by Bacillus-Calmette-Guérin vaccination and most nontuberculous mycobacteria. Most comparative studies show a better performance of the IGRAs than tuberculin skin testing in terms of a higher specificity. The rate of indeterminate results may be affected by glucocorticoids and the underlying disease but appears independent of disease-modifying antirheumatic drugs. Despite using identical Mycobacterium tuberculosis antigens, the two commercially available tests show differences in clinical performance. SUMMARY: The current information about the performance of the tuberculin skin testing and the IGRAs in the detection of latent tuberculosis infection in patients with rheumatic diseases strongly suggest a clinically relevant advantage of the IGRAs. Their use will help to reduce overuse and underuse of preventive treatment in tumour necrosis factor inhibition.
Resumo:
Protection against malaria can be achieved by induction of a strong CD8(+) T-cell response against the Plasmodium circumsporozoite protein (CSP), but most subunit vaccines suffer from insufficient memory responses. In the present study, we analyzed the impact of postimmunization sporozoite challenge on the development of long-lasting immunity. BALB/c mice were immunized by a heterologous prime/boost regimen against Plasmodium berghei CSP that induces a strong CD8(+) T-cell response and sterile protection, which is short-lived. Here, we show that protective immunity is prolonged by a sporozoite challenge after immunization. Repeated challenges induced sporozoite-specific antibodies that showed protective capacity. The numbers of CSP-specific CD8(+) T cells were not substantially enhanced by sporozoite infections; however, CSP-specific memory CD8(+) T cells of challenged mice displayed a higher cytotoxic activity than memory T cells of immunized-only mice. CD4(+) T cells contributed to protection as well; but CD8(+) memory T cells were found to be the central mediator of sterile protection. Based on these data, we suggest that prolonged protective immunity observed after immunization and infection is composed of different antiparasitic mechanisms including CD8(+) effector-memory T cells with increased cytotoxic activity as well as CD4(+) memory T cells and neutralizing antibodies.
Resumo:
Recent findings in the field of biomaterials and tissue engineering provide evidence that surface immobilised growth factors display enhanced stability and induce prolonged function. Cell response can be regulated by material properties and at the site of interest. To this end, we developed scaffolds with covalently bound vascular endothelial growth factor (VEGF) and evaluated their mitogenic effect on endothelial cells in vitro. Nano- (254±133 nm) or micro-fibrous (4.0±0.4 μm) poly(ɛ-caprolactone) (PCL) non-wovens were produced by electrospinning and coated in a radio frequency (RF) plasma process to induce an oxygen functional hydrocarbon layer. Implemented carboxylic acid groups were converted into amine-reactive esters and covalently coupled to VEGF by forming stable amide bonds (standard EDC/NHS chemistry). Substrates were analysed by X-ray photoelectron spectroscopy (XPS), enzyme-linked immuno-assays (ELISA) and immunohistochemistry (anti-VEGF antibody and VEGF-R2 binding). Depending on the reaction conditions, immobilised VEGF was present at 127±47 ng to 941±199 ng per substrate (6mm diameter; concentrations of 4.5 ng mm(-2) or 33.3 ng mm(-2), respectively). Immunohistochemistry provided evidence for biological integrity of immobilised VEGF. Endothelial cell number of primary endothelial cells or immortalised endothelial cells were significantly enhanced on VEGF-functionalised scaffolds compared to native PCL scaffolds. This indicates a sustained activity of immobilised VEGF over a culture period of nine days. We present a versatile method for the fabrication of growth factor-loaded scaffolds at specific concentrations.
Resumo:
Engineering nanoparticles (NPs) for immune modulation require a thorough understanding of their interaction(s) with cells. Gold NPs (AuNPs) were coated with polyethylene glycol (PEG), polyvinyl alcohol (PVA) or a mixture of both with either positive or negative surface charge to investigate uptake and cell response in monocyte-derived dendritic cells (MDDCs). Inductively coupled plasma optical emission spectrometry and transmission electron microscopy were used to confirm the presence of Au inside MDDCs. Cell viability, (pro-)inflammatory responses, MDDC phenotype, activation markers, antigen uptake and processing were analyzed. Cell death was only observed for PVA-NH2 AuNPs at the highest concentration. MDDCs internalize AuNPs, however, surface modification influenced uptake. Though limited uptake was observed for PEG-COOH AuNPs, a significant tumor necrosis factor-alpha release was induced. In contrast, (PEG+PVA)-NH2 and PVA-NH2 AuNPs were internalized to a higher extent and caused interleukin-1beta secretion. None of the AuNPs caused changes in MDDC phenotype, activation or immunological properties.
Resumo:
Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.
Resumo:
The adenylate cyclase toxoid (ACT) of Bordetella pertussis is capable of delivering its N-terminal catalytic domain into the cytosol of CD11b-expressing professional antigen-presenting cells such as myeloid dendritic cells. This allows delivery of CD8+ T-cell epitopes to the major histocompatibility complex (MHC) class I presentation pathway. Recombinant detoxified ACT containing an epitope of the Plasmodium berghei circumsporozoite protein (CSP), indeed, induced a specific CD8+ T-cell response in immunized mice after a single application, as detected by MHC multimer staining and gamma interferon (IFN-gamma) ELISPOT assay. This CSP-specific response could be significantly enhanced by prime-boost immunization with recombinant ACT in combination with anti-CTLA-4 during the boost immunization. This increased response was accompanied by complete protection in a number of mice after a challenge with P. berghei sporozoites. Transient blockade of CTLA-4 may overcome negative regulation and hence provide a strategy to enhance the efficacy of a vaccine by amplifying the number of responding T cells.
Resumo:
Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.
Resumo:
Previous cancer vaccination trials often aimed to activate CD8(+) cytotoxic T-cell (CTL) responses with short (8-10mer) peptides and targeted CD4(+) helper T cells (TH) with HLA class II-binding longer peptides (12-16 mer) that were derived from tumor antigens. Accordingly, a study of immunomonitoring focused on the detection of CTL responses to the short, and TH responses to the long, peptides. The possible induction of concurrent TH responses to short peptides was widely neglected. In a recent phase I vaccination trial, 53 patients with different solid cancers were vaccinated with EMD640744, a cocktail of five survivin-derived short (9- or 10-mer) peptides in Montanide ISA 51VG. We monitored 49 patients and found strong CD8(+) T-cell responses in 63% of the patients. In addition, we unexpectedly found CD4(+) TH cell responses against at least two of the five short peptides in 61% (23/38) of the patients analyzed. The two peptides were recognized by HLA-DP4- and HLA-DR-restricted TH1 cells. Some short peptide-reactive (sp)CD4 T cells showed high functional avidity. Here, we show that a short peptide vaccine is able to activate a specific CD4(+) T-cell repertoire in many patients, facilitating a strong combined CD4(+)/CD8(+) T-cell response. Cancer Immunol Res; 4(1); 18-25. ©2015 AACR.