117 resultados para calling sites
Resumo:
We measured δ17O and δ18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data showed that the large increase depicted at Vostok (20 ppm) during the last deglaciation, is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 13 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that relative humidity (RH) at the oceanic source region (OSR) are a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RH at the OSR.
Resumo:
To estimate the applicability of potential sites for insertion of orthodontic mini-implants (OMIs) by a systematic review of studies that used computed tomography (CT) or cone beam CT to evaluate anatomical bone quality and quantity parameters, such as bone thickness, available space, and bone density.
Resumo:
This retrospective radiographic study analyzed the dimensions of the alveolar bone in the posterior dentate mandible based on cone beam computed tomography (CBCT) images. A total of 56 CBCT images met the inclusion criteria, resulting in a sample size of 122 cross sections showing posterior mandibular teeth (premolars and molars). The thickness of the buccal and lingual bone walls was measured at two locations: 4 mm apical to the cementoenamel junction (measurement point 1, MP1) and at the middle of the root (measurement point 2, MP2). Further, alveolar bone width was assessed at the level of the most coronal buccal bone detectable (alveolar bone width 1, BW1) and at the superior border of the mandibular canal (alveolar bone width 2, BW2). The vertical distance between the two as well as the presence of a lingual undercut were also analyzed. There was a steady increase in buccal bone wall thickness from the first premolar to the second molar at both MP1 and MP2. BW1 at the level of the premolars was significantly thinner than that for molars. Alveolar bone height was constant for all teeth examined. For the selection of an appropriate postextraction treatment approach, analysis of the alveolar bone dimensions at the tooth to be extracted by means of CBCT can offer valuable information concerning bone volume and morphology at the future implant site.
Resumo:
Muscarinic acetylcholine (M) and adrenergic (AR) receptors mediate gastrointestinal motility. Using radioligand binding assays and real-time polymerase chain reaction, the densities of binding sites and mRNA levels of M(2), M(3), alpha(2AD)- and beta(2)-AR were compared in muscle tissues from the abomasal fundus, pylorus, duodenum, caecum, and external loop of the spiral colon of eight cows with left displacement of abomasum (LDA), and of eight healthy cows. Specific binding of the [(3)H]-ligands to each of the four receptors was competitive and saturable. Binding sites of M(2) (all intestinal sites), M(3) (duodenum and caecum), and of alpha(2AD)-AR (abomasal fundus) were lower (P<0.05) in cows with LDA than in healthy cows. The coefficients of correlation between binding sites and mRNA transcripts of receptors were dissimilar in cows with LDA and healthy cows. The decrease in densities of M (intestine) and of alpha(2AD)-AR (abomasum) receptors suggests their implication in the impairment of motility associated with or leading to LDA.
Resumo:
We measured δ17O and δ18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively, and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008a) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data show that the large increase depicted at Vostok (20 ppm) during the last deglaciation is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 12 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). A Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that normalized relative humidity (RHn) at the oceanic source region (OSR) is a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RHn at the OSR.