48 resultados para bottom simulating reflector


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα domain from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamic deterministic simulation model was developed to assess the impact of different putative control strategies on the seroprevalence of Neospora caninum in female Swiss dairy cattle. The model structure comprised compartments of "susceptible" and "infected" animals (SI-model) and the cattle population was divided into 12 age classes. A reference model (Model 1) was developed to simulate the current (status quo) situation (present seroprevalence in Switzerland 12%), taking into account available demographic and seroprevalence data of Switzerland. Model 1 was modified to represent four putative control strategies: testing and culling of seropositive animals (Model 2), discontinued breeding with offspring from seropositive cows (Model 3), chemotherapeutic treatment of calves from seropositive cows (Model 4), and vaccination of susceptible and infected animals (Model 5). Models 2-4 considered different sub-scenarios with regard to the frequency of diagnostic testing. Multivariable Monte Carlo sensitivity analysis was used to assess the impact of uncertainty in input parameters. A policy of annual testing and culling of all seropositive cattle in the population reduced the seroprevalence effectively and rapidly from 12% to <1% in the first year of simulation. The control strategies with discontinued breeding with offspring from all seropositive cows, chemotherapy of calves and vaccination of all cattle reduced the prevalence more slowly than culling but were still very effective (reduction of prevalence below 2% within 11, 23 and 3 years of simulation, respectively). However, sensitivity analyses revealed that the effectiveness of these strategies depended strongly on the quality of the input parameters used, such as the horizontal and vertical transmission factors, the sensitivity of the diagnostic test and the efficacy of medication and vaccination. Finally, all models confirmed that it was not possible to completely eradicate N. caninum as long as the horizontal transmission process was not interrupted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified Astra type multistage liquid impinger (MSLI) with integrated bronchial cell monolayers was used to study deposition and subsequent drug absorption on in vitro models of the human airway epithelial barrier. Inverted cell culture of Calu-3 cells on the bottom side of cell culture filter inserts was integrated into a compendial MSLI. Upside down cultivation did not impair the barrier function, morphology and viability of Calu-3 cells. Size selective deposition with subsequent absorption was studied for three different commercially available dry powder formulations of salbutamol sulphate and budesonide. After deposition without size separation the absorption rates from the aerosol formulations differed but correlated with the size of the carrier lactose particles. However, after deposition in the MSLI, simulating relevant impaction and causing the separation of small drug crystals from the carrier lactose, the absorption rates of the three formulations were identical, confirming the bioequivalence of the three formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Phenotypic optimality models neglect genetics. However, especially when heterozygous genotypes ire fittest, evolving allele, genotype and phenotype frequencies may not correspond to predicted optima. This was not previously addressed for organisms with complex life histories. Methods Therefore, we modelled the evolution of a fitness-relevant trait of clonal plants, stolon internode length. We explored the likely case of air asymmetric unimodal fitness profile with three model types. In constant selection models (CSMs), which are gametic, but not spatially explicit, evolving allele frequencies in the one-locus and five-loci cases did not correspond to optimum stolon internode length predicted by the spatially explicit, but not gametic, phenotypic model. This deviation was due to the asymmetry of the fitness profile. Gametic, spatially explicit individual-based (SEIB) modeling allowed us relaxing the CSM assumptions of constant selection with exclusively sexual reproduction. Important findings For entirely vegetative or sexual reproduction, predictions. of the gametic SEIB model were close to the ones of spatially explicit CSMs gametic phenotypic models, hut for mixed modes of reproduction they appoximated those of gametic, not spatially explicit CSMs. Thus, in contrast to gametic SEIB models, phenotypic models and, especially for few loci, also CSMs can be very misleading. We conclude that the evolution of trails governed by few quantitative trait loci appears hardly predictable by simple models, that genetic algorithms aiming at technical optimization may actually, miss the optimum and that selection may lead to loci with smaller effects, in derived compared with ancestral lines.