95 resultados para autosomal dominant inheritances
Resumo:
A 51-year-old Chinese man presented with gaze-evoked nystagmus, impaired smooth pursuit and vestibular ocular reflex cancellation, and saccadic dysmetria, along with a family history suggestive of late-onset autosomal dominant parkinsonism. MRI revealed abnormalities of the medulla and cervical spinal cord typical of adult-onset Alexander disease, and genetic testing showed homozygosity for the p.D295N polymorphic allele in the gene encoding the glial fibrillary acidic protein. A review of the literature shows that ocular signs are frequent in adult-onset Alexander disease, most commonly gaze-evoked nystagmus, pendular nystagmus, and/or oculopalatal myoclonus, and less commonly ptosis, miosis, and saccadic dysmetria. These signs are consistent with the propensity of adult-onset Alexander disease to cause medullary abnormalities on neuroimaging.
Resumo:
Aortic dilatation/dissection (AD) can occur spontaneously or in association with genetic syndromes, such as Marfan syndrome (MFS; caused by FBN1 mutations), MFS type 2 and Loeys-Dietz syndrome (associated with TGFBR1/TGFBR2 mutations), and Ehlers-Danlos syndrome (EDS) vascular type (caused by COL3A1 mutations). Although mutations in FBN1 and TGFBR1/TGFBR2 account for the majority of AD cases referred to us for molecular genetic testing, we have obtained negative results for these genes in a large cohort of AD patients, suggesting the involvement of additional genes or acquired factors. In this study we assessed the effect of COL3A1 deletions/duplications in this cohort. Multiplex ligation-dependent probe amplification (MLPA) analysis of 100 unrelated patients identified one hemizygous deletion of the entire COL3A1 gene. Subsequent microarray analyses and sequencing of breakpoints revealed the deletion size of 3,408,306 bp at 2q32.1q32.3. This deletion affects not only COL3A1 but also 21 other known genes (GULP1, DIRC1, COL5A2, WDR75, SLC40A1, ASNSD1, ANKAR, OSGEPL1, ORMDL1, LOC100129592, PMS1, MSTN, C2orf88, HIBCH, INPP1, MFSD6, TMEM194B, NAB1, GLS, STAT1, and STAT4), mutations in three of which (COL5A2, SLC40A1, and MSTN) have also been associated with an autosomal dominant disorder (EDS classical type, hemochromatosis type 4, and muscle hypertrophy). Physical and laboratory examinations revealed that true haploinsufficiency of COL3A1, COL5A2, and MSTN, but not that of SLC40A1, leads to a clinical phenotype. Our data not only emphasize the impact/role of COL3A1 in AD patients but also extend the molecular etiology of several disorders by providing hitherto unreported evidence for true haploinsufficiency of the underlying gene.
Resumo:
Isolated GH deficiency type II (IGHD II) is the autosomal dominant form of GHD. In the majority of the cases, this disorder is due to specific GH-1 gene mutations that lead to mRNA missplicing and subsequent loss of exon 3 sequences. When misspliced RNA is translated, it produces a toxic 17.5-kDa GH (Delta3GH) isoform that reduces the accumulation and secretion of wild-type-GH. At present, patients suffering from this type of disease are treated with daily injections of recombinant human GH in order to maintain normal growth. However, this type of replacement therapy does not prevent toxic effects of the Delta3GH mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. We developed a strategy involving Delta3GH isoform knockdown mediated by expression of a microRNA-30-adapted short hairpin RNA (shRNA) specifically targeting the Delta3GH mRNA of human (shRNAmir-Delta3). Rat pituitary tumor GC cells expressing Delta3GH upon doxycycline induction were transduced with shRNAmir-Delta3 lentiviral vectors, which significantly reduced Delta3GH protein levels and improved human wild-type-GH secretion in comparison with a shRNAmir targeting a scrambled sequence. No toxicity due to shRNAmir expression could be observed in cell proliferation assays. Confocal microscopy strongly suggested that shRNAmir-Delta3 enabled the recovery of GH granule storage and secretory capacity. These viral vectors have shown their ability to stably integrate, express shRNAmir, and rescue IGHD II phenotype in rat pituitary tumor GC cells, a methodology that opens new perspectives for the development of gene therapy to treat IGHD patients.
Resumo:
Epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma), characterized by ichthyotic, rippled hyperkeratosis, erythroderma and skin blistering, is a rare autosomal dominant disease caused by mutations in keratin 1 or keratin 10 (K10) genes. A severe phenotype is caused by a missense mutation in a highly conserved arginine residue at position 156 (R156) in K10.
Resumo:
Despite the differences in the main characteristics between the autosomal dominant form of GH deficiency (IGHD II) and the bioinactive GH syndrome, a common feature of both is their impact on linear growth leading to short stature in all affected patients.
Resumo:
Arterial hypertension in childhood is less frequent as compared to adulthood but is more likely to be secondary to an underlying disorder. After ruling out more obvious causes, some patients still present with strongly suspected secondary hypertension of yet unknown etiology. A number of these children have hypertension due to single gene mutations inherited in an autosomal dominant or recessive fashion. The finding of abnormal potassium levels (low or high) in the presence of suppressed renin secretion, and metabolic alkalosis or acidosis should prompt consideration of these familial diseases. However, mild hypertension and the absence of electrolyte abnormalities do not exclude hereditary conditions. In monogenic hypertensive disorders, three distinct mechanisms leading to the common final pathway of increased sodium reabsorption, volume expansion, and low plasma renin activity are documented. The first mechanism relates to gain-of-function mutations with a subsequent hyperactivity of renal sodium and chloride reabsorption leading to plasma volume expansion (e.g., Liddle's syndrome, Gordon's syndrome). The second mechanism involves deficiencies of enzymes that regulate adrenal steroid hormone synthesis and deactivation (e.g., subtypes of congenital adrenal hyperplasia, apparent mineralocorticoid excess (AME)). The third mechanism is characterized by excessive aldosterone synthesis that escapes normal regulatory mechanisms and leading to volume-dependent hypertension in the presence of suppressed renin release (glucocorticoid remediable aldosteronism). Hormonal studies coupled with genetic testing can help in the early diagnosis of these disorders.
Resumo:
Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.
Resumo:
BACKGROUND: Familial isolated growth hormone deficiency (IGHD) is a disorder with about 5-30% of patients having affected relatives. Among those familial types, IGHD type II is an autosomal dominant form of short stature, associated in some families with mutations that result in missplicing to produce del32-71-GH, a GH peptide which cannot fold properly. The mechanism by which this mutant GH may alter the controlled secretory pathway and therefore suppress the secretion of the normal 22-kDa GH product of the normal allele is not known in detail. Previous studies have shown variance depending on cell type, transfection technique used, as well as on the method of analysis performed. AIM: The aim of our study was to analyse and compare the subcellular distribution/localization of del32-71-GH or wild-type (wt)-GH (22-kDa GH), each stably transfected into AtT-20, a mouse pituitary cell line endogenously producing ACTH, employed as the internal control for secretion assessment. METHODS: Colocalization of wt- and del32-71 mutant GH form was studied by quantitative confocal microscopy analysis. Using the immunofluorescent technique, cells were double stained for GH plus one of the following organelles: endoplasmic reticulum (ER anti-Grp94), Golgi (anti-betaCOP) or secretory granules (anti-Rab3a). In addition, GH secretion and cell viability were analysed in detail. RESULTS/CONCLUSIONS: Our results show that in AtT-20 neuroendocrine cells, in comparison to the wt-GH, the del32-71-GH has a major impact on the secretory pathway not only affecting GH but also other peptides such as ACTH. The del32-71-GH is still present at the secretory vesicles' level, albeit in reduced quantity when compared to wt-GH but, importantly, was secretion-deficient. Furthermore, while focusing on cell viability an additional finding presented that the various splice site mutations, even though leading eventually to the same end product, namely del32-71-GH, have different and specific consequences on cell viability and proliferation rate.
Resumo:
PURPOSE OF REVIEW: P450 oxidoreductase deficiency--a newly described form of congenital adrenal hyperplasia--typically presents a steroid profile suggesting combined deficiencies of steroid 21-hydroxylase and 17alpha-hydroxylase/17,20-lyase activities. These and other enzymes require electron donation from P450 oxidoreductase. The clinical spectrum of P450 oxidoreductase deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency and the Antley-Bixler skeletal malformation syndrome to mildly affected individuals with polycystic ovary syndrome. We review current knowledge of P450 oxidoreductase deficiency and its broader implications. RECENT FINDINGS: Since the first report in 2004, at least 21 P450 oxidoreductase mutations have been reported in over 40 patients. The often subtle manifestations of P450 oxidoreductase deficiency suggest it may be relatively common. P450 oxidoreductase deficiency, with or without Antley-Bixler syndrome, is autosomal recessive, whereas Antley-Bixler syndrome without disordered steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations. In-vitro assays of P450 oxidoreductase missense mutations based on P450 oxidoreductase-supported P450c17 activities provide excellent genotype/phenotype correlations. The causal connection between P450 oxidoreductase deficiency and disordered bone formation remains unclear. SUMMARY: P450 oxidoreductase mutations cause combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase. Individuals with an Antley-Bixler syndrome-like phenotype presenting with sexual ambiguity or other abnormalities in steroidogenesis should be analyzed for P450 oxidoreductase deficiency.
Resumo:
PURPOSE: Identification of a novel rhodopsin mutation in a family with retinitis pigmentosa and comparison of the clinical phenotype to a known mutation at the same amino acid position. METHODS: Screening for mutations in rhodopsin was performed in 78 patients with retinitis pigmentosa. All exons and flanking intronic regions were amplified by PCR, sequenced, and compared to the reference sequence derived from the National Center for Biotechnology Information (NCBI, Bethesda, MD) database. Patients were characterized clinically according to the results of best corrected visual acuity testing (BCVA), slit lamp examination (SLE), funduscopy, Goldmann perimetry (GP), dark adaptometry (DA), and electroretinography (ERG). Structural analyses of the rhodopsin protein were performed with the Swiss-Pdb Viewer program available on-line (http://www.expasy.org.spdvbv/ provided in the public domain by Swiss Institute of Bioinformatics, Geneva, Switzerland). RESULTS: A novel rhodopsin mutation (Gly90Val) was identified in a Swiss family of three generations. The pedigree indicated autosomal dominant inheritance. No additional mutation was found in this family in other autosomal dominant genes. The BCVA of affected family members ranged from 20/25 to 20/20. Fundus examination showed fine pigment mottling in patients of the third generation and well-defined bone spicules in patients of the second generation. GP showed concentric constriction. DA demonstrated monophasic cone adaptation only. ERG revealed severely reduced rod and cone signals. The clinical picture is compatible with retinitis pigmentosa. A previously reported amino acid substitution at the same position in rhodopsin leads to a phenotype resembling night blindness in mutation carriers, whereas patients reported in the current study showed the classic retinitis pigmentosa phenotype. The effect of different amino acid substitutions on the three-dimensional structure of rhodopsin was analyzed by homology modeling. Distinct distortions of position 90 (shifts in amino acids 112 and 113) and additional hydrogen bonds were found. CONCLUSIONS: Different amino acid substitutions at position 90 of rhodopsin can lead to night blindness or retinitis pigmentosa. The data suggest that the property of the substituted amino acid distinguishes between the phenotypes.
Resumo:
Four male Pomeranians that showed alopecia with an age of onset between five months and eight years were investigated.The aim of the investigation was to clarify whether the affected dogs had alopecia X and whether their symptoms might be due to a hereditary defect.The four affected dogs showed hairless patches at the root of the tail, at the back, at the limbs from the thigh to the tarsus and at the abdomen. Within the hairless patches some islets with sparse hair were present. In hairless patches the skin was dark pigmented. Besides the alopecia and hyperpigmentation no other symptoms were found according to anamnestic and clinical examination. History, clinical examinations, laboratory diagnostics, and histopathology of skin biopsies allowed the diagnosis of alopecia X in three affected male dogs.The last one of the affected dogs additionally had slightly reduced thyroid hormone levels. Based on identical symptoms and the close relatedness of all four animals, it was assumed that the fourth affected dog also had alopecia X.The available data possibly indicate a monogenic autosomal dominant inheritance, however a recessive inheritance can not be excluded at this time.
Resumo:
Darier's disease is a rare, inherited autosomal dominant skin disorder caused by a mutation in the sarcoendoplasmatic reticulum calcium transporter (SERCA)-2-gene. In a number of pedigrees, Darier's disease closely relates with affective disorder. The most likely hypothesis for this is a susceptibility gene for affective disorder near the SERCA-2-gene. A 6.5-megabase region could be identified as a susceptibility locus. This region constitutes a susceptability locus also in affective disorder without Darier's disease. The underlying gene has not yet been identified.
Resumo:
The white sponge naevus is a rare benign, hereditary autosomal dominant disorder of the mucosa. The oral mucosa is most often affected, but vaginal and anal mucosal surfaces may also be involved. Clinically, a whitish-grey, ragged, and folded surface that has no clear demarcation and appears sponge-like is characteristic, often creating problems in differential diagnosis. A potential risk for malignant transformation of white sponge naevus lesions has not been reported. The therapy for this benign hereditary disorder is unknown, however does not appear to be necessary. In the present report of a family with known white sponge naevus in three different generations, clinical, histopathologic, cytopathologic, DNA-cytomertric, and genetic aspects are described and discussed.
Resumo:
Natal teeth have been defined as teeth which are present at birth, while neonatal teeth erupt during the first 30 days. Their occurrence is rare, the prevalence ranges from 1:2000 to 1:3000 with a higher frequency in the lip and palate clefts and syndroms. In about 85% natal or neonatal teeth are lower central incisors (60% in pairs), rare are upper teeth, molars and multiple teeth. In almost 90% they are part of the deciduous dentition. A lot of possible causes of early eruption are discussed, but only the relation to hereditary factors seems to be evident. An autosomal dominant trait is often described. The appearance of these teeth is dependent on the degree of maturity, but most of the time it is loose, small, discoloured and hypoplastic. Histologically, enamel hypoplasia with normal prism structure is apparent. No significant disturbances of the dentin structures are observed, only cervically dentin becomes atubular with spaces and enclosed cells. A large vascular pulp and failure of root formation are further investigations. Our microhardness measurements showed values from 24.3-32.4 KHN for enamel and 48.3-62.2 KHN for dentin, while normal deciduous teeth have an enamel hardness of 322.0 +/- 17.5 KHN. The thickness of enamel was never more than 280 microm compared to up to 1200 microm in normal teeth. This shows the retarded development of natal and neonatal teeth, because mineralization has not finished at the time of birth. In accordance with developmental age tooth structure and appearence are normal. In consideration of complications as Riga-Fede-disease, feeding problems, possibility of infection and hypermobility most of the time extraction is the treatment of choice, but in the interest of protecting the child this decision should be made carefully.
Resumo:
We report on a de novo submicroscopic deletion of 20q13.33 identified by subtelomeric fluorescence in situ hybridization (FISH) in a 4-year-old girl with learning difficulties, hyperlaxity and strabismus, but without obvious dysmorphic features. Further investigations by array-based comparative genomic hybridization (array-CGH) and FISH analysis allowed us to delineate the smallest reported subterminal deletion of chromosome 20q, spanning a 1.1-1.6 Mb with a breakpoint localized between BAC RP5-887L7 and RP11-261N11. The genes CHRNA4 and KCNQ2 implicated in autosomal dominant epilepsy are included in the deletion interval. Subterminal 20q deletions as found in the present patient have, to our knowledge, only been reported in three patients. We review the clinical and behavioral phenotype of such "pure" subterminal 20q deletions.