40 resultados para atom interferometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the Moon is not shielded by a global magnetic field or by an atmosphere, solar wind plasma impinges onto the lunar surface almost unhindered. Until recently, it was assumed that almost all of the impinging solar wind ions are absorbed by the surface. However, recent Interstellar Boundary Explorer, Chandrayaan-1, and Kaguya observations showed that the interaction process between the solar wind ions and the lunar surface is more complex than previously assumed. In contrast to previous assumptions, a large fraction of the impinging solar wind ions is backscattered as energetic neutral atoms. Using the complete Chandrayaan-1 Energetic Neutral Analyzer data set, we compute a global solar wind reflection ratio of 0.16 ± 0.05 from the lunar surface. Since these backscattered neutral particles are not affected by any electric or magnetic fields, each particle's point of origin on the lunar surface can be determined in a straight-forward manner allowing us to create energetic neutral atom maps of the lunar surface. The energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer cover ˜89% of the lunar surface, whereby the lunar farside is almost completely covered. We analyzed all available energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer to create the first global energetic neutral hydrogen maps of the lunar surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solar wind continuously flows out from the Sun, filling interplanetary space and directly interacting with the surfaces of small planetary bodies and other objects throughout the solar system. A significant fraction of these ions backscatter from the surface as energetic neutral atoms (ENAs). The first observations of these ENA emissions from the Moon were recently reported from the Interstellar Boundary Explorer (IBEX). These observations yielded a lunar ENA albedo of ˜10% and showed that the Moon reflects ˜150 metric tons of neutral hydrogen per year. More recently, a survey of the first 2.5 years of IBEX observations of lunar ENAs was conducted for times when the Moon was in the solar wind. Here, we present the first IBEX ENA observations when the Moon is inside the terrestrial magnetosheath and compare them with observations when the Moon is in the solar wind. Our analysis shows that: (1) the ENA intensities are on average higher when the Moon is in the magnetosheath, (2) the energy spectra are similar above ~0.6* solar wind energy but below there are large differences of the order of a factor of 10, (3) the energy spectra resemble a power law with a "hump" at ˜0.6 * solar wind energy, and (4) this "hump" is broader when the Moon is in the magnetosheath. We explore potential scenarios to explain the differences, namely the effects of the topography of the lunar surface and the consequences of a very different Mach number in the solar wind versus in the magnetosheath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of electric potential over lunar magnetized regions is essential for understanding fundamental lunar science, for understanding the lunar environment, and for planning human exploration on the Moon. A large positive electric potential was predicted and detected from single point measurements. Here, we demonstrate a remote imaging technique of electric potential mapping at the lunar surface, making use of a new concept involving hydrogen neutral atoms derived from solar wind. We apply the technique to a lunar magnetized region using an existing dataset of the neutral atom energy spectrometer SARA/CENA on Chandrayaan-1. Electrostatic potential larger than +135 V inside the Gerasimovic anomaly is confirmed. This structure is found spreading all over the magnetized region. The widely spread electric potential can influence the local plasma and dust environment near the magnetic anomaly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the realization of Atom Trap Trace Analysis for39Ar and its first application to dating of groundwater samples. The presented system achieves an atmospheric39Ar count rate as high as 3.58 ± 0.10 atoms/h allowing for the determination of the39Ar concentration in less than a day. We demonstrate that the measured count rates are proportional to the39Ar concentration by intercomparison with Low-Level Counting results and by measurements on prepared argon samples with defined concentration. For a geophysical application, we degas three different groundwater samples and gas chromatographically extract the argon. The39Ar ages inferred from the count rates extend over the accessible dating range and are in agreement with the Low-Level Counting results as well as with complementary isotope data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrations, electromagnetic oscillations, and temperature drifts are among the main reasons for dephasing in matter-wave interferometry. Sophisticated interferometry experiments, e.g., with ions or heavy molecules, often require integration times of several minutes due to the low source intensity or the high velocity selection. Here we present a scheme to suppress the influence of such dephasing mechanisms—especially in the low-frequency regime—by analyzing temporal and spatial particle correlations available in modern detectors. Such correlations can reveal interference properties that would otherwise be washed out due to dephasing by external oscillating signals. The method is shown experimentally in a biprism electron interferometer where a perturbing oscillation is artificially introduced by a periodically varying magnetic field. We provide a full theoretical description of the particle correlations where the perturbing frequency and amplitude can be revealed from the disturbed interferogram. The original spatial fringe pattern without the perturbation can thereby be restored. The technique can be applied to lower the general noise requirements in matter-wave interferometers. It allows for the optimization of electromagnetic shielding and decreases the efforts for vibrational or temperature stabilization.