31 resultados para arsenite, leiteite, reinerite, Raman Spectroscopy, single crystal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rare mixed copper-zinc phosphate mineral veszelyite (Cu,Zn)2Zn(PO4)(OH)3·2H2O space group P21/c, a = 7.5096(2), b = 10.2281(2), c = 9.8258(2) Å, β = 103.3040(10)°, V = 734.45(3) Å3 was investigated by in situ temperature-dependent single-crystal X-ray structure refinements. The atomic arrangement of veszelyite consists of an alternation of octahedral and tetrahedral sheets. The Jahn-Teller distorted CuO6 octahedra form sheets with eight-membered rings. The tetrahedral sheet composed of PO4 and ZnO3(OH) tetrahedra shows strong topological similarities to that of cavansite, gismondine, and kipushite.Diffraction data of a sample from Zdravo Vrelo, near Kreševo (Bosnia and Herzegovina) have been measured in steps of 25 up to 225 °C. Hydrogen positions and the hydrogen-bond system were determined experimentally from the structure refinements of data collected up to 125 °C. At 200 °C, the hydrogen-bonding scheme was inferred from bond-valence calculations and donor-acceptor distances. The hydrogen-bond system connects the tetrahedral sheet to the octahedral sheet and also braces the Cu sheet.At 150 °C, the H2O molecule at H2O2 was released and the Cu coordination (Cu1 and Cu2) decreased from originally six- to fivefold. Cu1 has a square planar coordination by four OH groups and an elongate distance to O3, whereas Cu2 has the Jahn-Teller characteristic elongate bond to H2O1. The unit-cell volume decreased 7% from originally 734.45(3) to 686.4(4) Å3 leading to a formula with 1 H2O pfu. The new phase observed above 150 °C is characterized by an increase of the c axis and a shortening of the b axis. The bending of T-O-T angles causes an increasing elliptical shape of the eight-membered rings in the tetrahedral and octahedral sheets. Moreover a rearrangement of the hydrogen-bond system was observed.At 225 °C, the structure degrades to an X-ray amorphous residual due to release of the last H2O molecule at H2O1. The stronger Jahn-Teller distortion of Cu1 relative to Cu2 suggests that Cu1 is fully occupied by Cu, whereas Cu2 bears significant Zn. H2O1 is the fifth ligand of Cu2. Zn at Cu2 is not favorable to adopt planar fourfold coordination. Thus, if the last water molecule is expelled the structure is destabilized.This study contributes to understanding the dehydration mechanism and thermal stability of supergene minerals characterized by Jahn-Teller distorted octahedra with mixed Cu, Zn occupancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To track dehydration behavior of cavansite, Ca(VO)(Si4O10)·4H2O space group Pnma, a = 9.6329(2), b = 13.6606(2), c = 9.7949(2) Å, V = 1288.92(4) Å3 single-crystal X-ray diffraction data on a crystal from Wagholi quarry, Poona district (India) were collected up to 400 °C in steps of 25 °C up to 250 °C and in steps of 50 °C between 250 and 400 °C. The structure of cavansite is characterized by layers of silicate tetrahedra connected by V4+O5 square pyramids. This way a porous framework structure is formed with Ca and H2O as extraframework occupants. At room temperature, the hydrogen bond system was analyzed. Ca is eightfold coordinated by four bonds to O of the framework structure and four bonds to H2O molecules. H2O linked to Ca is hydrogen bonded to the framework and also to adjacent H2O molecules. The dehydration in cavansite proceeds in four steps.At 75 °C, H2O at O9 was completely expelled leading to 3 H2O pfu with only minor impact on framework distortion and contraction V = 1282.73(3) Å3. The Ca coordination declined from originally eightfold to sevenfold and H2O at O7 displayed positional disorder.At 175 °C, the split O7 sites approached the former O9 position. In addition, the sum of the three split positions O7, O7a, and O7b decreased to 50% occupancy yielding 2 H2O pfu accompanied by a strong decrease in volume V = 1206.89(8) Å3. The Ca coordination was further reduced from sevenfold to sixfold.At 350 °C, H2O at O8 was released leading to a formula with 1 H2O pfu causing additional structural contraction (V = 1156(11) Å3). At this temperature, Ca adopted fivefold coordination and O7 rearranged to disordered positions closer to the original O9 H2O site.At 400 °C, cavansite lost crystallinity but the VO2+ characteristic blue color was preserved. Stepwise removal of water is discussed on the basis of literature data reporting differential thermal analyses, differential thermo-gravimetry experiments and temperature dependent IR spectra in the range of OH stretching vibrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques of electrode modification by copper deposits are developed that allow obtaining compact bulk quasi-epitaxial deposits on basal Pt(hkl) single crystal faces. The issues of the deposit roughness and characterization are discussed. Problems of drying and transferring electrodes with copper deposits into other solutions are considered. The obtained deposits are used for CO2 electroreduction in propylene carbonate and acetonitrile solutions of 0.1 M TBAPF6, and the relationship between the electrode surface structure and its electrocatalytic activity in CO2 electroreduction is discussed. We also demonstrate that the restructuring of Cu deposits occurs upon CO2 electroreduction. Complementary reactivity studies are presented for bare Pt(hkl) and Cu(hkl) single crystal electrodes. Cu-modified Pt(hkl) electrodes display the highest activity as compared to bare Pt(hkl) and Cu(hkl). Particularly, the Cu/Pt(110) electrode shows the highest activity among the electrodes under study. Such high activity of Cu/Pt(hkl) electrodes can be explained not only by the increasing actual surface area but also by structural effects, namely by the presence of a large amount of specific defect sites (steps, kinks) on Cu crystallites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dehydration behaviour of the zeolite merlinoite, NaK11[Al12Si20O64]·15H2O, from the Khibiny massif (Russia) was studied by means of single-crystal X-ray diffraction conjoined with step-wise heating to 225 C. At room temperature merlinoite has the space group Immm with a = 14.0312(5), b = 14.2675(6), c = 10.0874(4) Å, and V = 2019.40(14) Å3. At 75 °C the merlinoite structure undergoes pronounced dehydration accompanied by a phase transition to a structure that has the space group P42/nmc and remains consistent at elevated temperature. A fully dehydrated phase occurs at 200 °C (at 225 °C: a = 13.341(4), b = 13.341(4), c = 9.707(4) Å, V = 1727.7(12) Å3). Dehydration-induced framework distortion and symmetry were found to be different from those observed for synthetic potassium merlinoite with the K11.5[Al11.5Si20.5O64]·15H2O composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detrital provenance analyses in orogenic settings, in which sediments are collected at the outlet of a catchment, have become an important tool to estimate how erosion varies in space and time. Here we present how Raman Spectroscopy on Carbonaceous Material (RSCM) can be used for provenance analysis. RSCM provides an estimate of the peak temperature (RSCM-T) experienced during metamorphism. We show that we can infer modern erosion patterns in a catchment by combining new measurements on detrital sands with previously acquired bedrock data. We focus on the Whataroa catchment in the Southern Alps of New Zealand and exploit the metamorphic gradient that runs parallel to the main drainage direction. To account for potential sampling biases, we also quantify abrasion properties using flume experiments and measure the total organic carbon content in the bedrock that produced the collected sands. Finally, we integrate these parameters into a mass-conservative model. Our results first demonstrate that RSCM-T can be used for detrital studies. Second, we find that spatial variations in tracer concentration and erosion have a first-order control on the RSCM-T distributions, even though our flume experiments reveal that weak lithologies produce substantially more fine particles than do more durable lithologies. This result implies that sand specimens are good proxies for mapping spatial variations in erosion when the bedrock concentration of the target mineral is quantified. The modeling suggests that highest present-day erosion rates (in Whataroa catchment) are not situated at the range front but around 10 km into the mountain belt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carried out a comprehensive study of Au(1 1 1) oxidation–reduction in the presence of (hydrogen-) sulfate ions on ideally smooth and stepped Au(S)[n(1 1 1)-(1 1 1)] single crystal electrodes using cyclic voltammetry, in situ scanning tunneling microscopy (STM) and vibration spectroscopy, such as surface-enhanced infrared absorption spectroscopy (SEIRAS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Surface structure changes and the role of surface defects in the potential regions of double layer charging and gold oxidation/reduction are discussed based on cyclic voltammetry and in situ STM data. SEIRAS and SHINERS provide complementary information on the chemical nature of adsorbates. In particular, the potential-dependent formation and stability ranges of adsorbed sulfate, hydroxide-species and of gold surface oxide could be resolved in detail. Based on our experimental observations, we proposed new and extended mechanisms of gold surface oxidation and reduction in 1.0 M H2SO4 and 1.0 M Na2SO4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three samples of the skarn mineral rustumite Ca10(Si2O7)2(SiO4)(OH)2Cl2, space group C2/c, a ≈7.6, b ≈ 18.5, c ≈ 15.5 Å, β ≈ 104°, with variable OH, Cl, F content were investigated by electron microprobe, single-crystal X-ray structure refinements, and Raman spectroscopy. “Rust1LCl” is a low chlorine rustumite Ca10(Si2O7)2(SiO4)(OH1.88F0.12)(Cl1.28,OH0.72) from skarns associated with the Rize batholith near Ikizedere, Turkey. “Rust2F” is a F-bearing rustumite Ca10(Si2O7)2(SiO4)(OH1.13F0.87) (Cl1 96OH0.04) from xenoliths in ignimbrites of the Upper Chegem Caldera, Northern Caucasus, Russia. “Rust3LClF” represents a low-Cl, F-bearing rustumite Ca10(Si2O7)2(SiO4)0.87(H4O4)0.13(OH1.01F0.99) (Cl1.00 OH1.00) from altered merwinite skarns of the Birkhin massif, Baikal Lake area, Eastern Siberia, Russia. Rustumite from Birkhin massif is characterized by a significant hydrogarnet-like or fluorine substitution at the apices of the orthosilicate group, leading to specific atomic displacements. The crystal structures including hydrogen positions have been refined from single-crystal X-ray data to R1 = 0.0205 (Rust1_LCl), R1 = 0.0295 (Rust2_F), and R1 = 0.0243 (Rust3_LCl_F), respectively. Depletion in Cl and replacement by OH is associated with smaller unit-cell dimensions. The substitution of OH by F leads to shorter hydrogen bonds O-H⋯F instead of O-H⋯OH. Raman spectra for all samples have been measured and confirm slight strengthening of the hydrogen bonds with uptake of F.This study discusses the complex crystal chemistry of the skarn mineral rustumite and may provide a wider understanding of the chemical reactions related to contact metamorphism of limestones.