27 resultados para and photodetachment of molecules
Resumo:
The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the central nervous system.1 It is difficult to characterize transmembrane dynamic receptors with classical structural biology approaches like crystallization and x-ray. The use of photoaffinity probes is an alternative approach to identify regions in the protein that are important for the binding of small molecules. Therefore we synthesized a small library of photoaffinity probes by conjugating photophores via various linkers to granisetron which is a known antagonist of the 5-HT3R. We were able to obtain several compounds with diverse linker lengths and different photolabile moieties that show nanomolar binding affinities for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Currently we are investigating the photo crosslinking of these ligands with the 5-HT3R.
Resumo:
We demonstrate how redox control of intra-molecular quantum interference in phase-coherent molecular wires can be used to enhance the thermopower (Seebeck coefficient) S and thermoelectric figure of merit ZT of single molecules attached to nanogap electrodes. Using first principles theory, we study the thermoelectric properties of a family of nine molecules, which consist of dithiol-terminated oligo (phenylene-ethynylenes) (OPEs) containing various central units. Uniquely, one molecule of this family possesses a conjugated acene-based central backbone attached via triple bonds to terminal sulfur atoms bound to gold electrodes and incorporates a fully conjugated hydroquinonecentral unit. We demonstrate that both S and the electronic contribution Z el T to the figure of merit ZT can be dramatically enhanced by oxidizing the hydroquinone to yield a second molecule, which possesses a cross-conjugated anthraquinone central unit. This enhancement originates from the conversion of the pi-conjugation in the former to cross-conjugation in the latter, which promotes the appearance of a sharp anti-resonance at the Fermi energy. Comparison with thermoelectric properties of the remaining seven conjugated molecules demonstrates that such large values of S and Z el T are unprecedented. We also evaluate the phonon contribution to the thermal conductance, which allows us to compute the full figure of merit ZT = Z el T/(1 + κ p/κ el), where κ p is the phonon contribution to the thermal conductance and κ el is the electronic contribution. For unstructured gold electrodes, κ p/κ el Gt⃒ 1 and therefore strategies to reduce κ p are needed to realize the highest possible figure of merit.
Resumo:
The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.
Resumo:
Developmental assembly of the renal microcirculation is a precise and coordinated process now accessible to experimental scrutiny. Although definition of the cellular and molecular determinants is incomplete, recent findings have reframed concepts and questions about the origins of vascular cells in the glomerulus and the molecules that direct cell recruitment, specialization and morphogenesis. New findings illustrate principles that may be applied to defining critical steps in microvascular repair following glomerular injury. Developmental assembly of endothelial, mesangial and epithelial cells into glomerular capillaries requires that a coordinated, temporally defined series of steps occur in an anatomically ordered sequence. Recent evidence shows that both vasculogenic and angiogenic processes participate. Local signals direct cell migration, proliferation, differentiation, cell-cell recognition, formation of intercellular connections, and morphogenesis. Growth factor receptor tyrosine kinases on vascular cells are important mediators of many of these events. Cultured cell systems have suggested that basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) promote endothelial cell proliferation, migration or morphogenesis, while genetic deletion experiments have defined an important role for PDGF beta receptors and platelet-derived growth factor (PDGF) B in glomerular development. Receptor tyrosine kinases that convey non-proliferative signals also contribute in kidney and other sites. The EphB1 receptor, one of a diverse class of Eph receptors implicated in neural cell targeting, directs renal endothelial migration, cell-cell recognition and assembly, and is expressed with its ligand in developing glomeruli. Endothelial TIE2 receptors bind angiopoietins (1 and 2), the products of adjacent supportive cells, to signals direct capillary maturation in a sequence that defines cooperative roles for cells of different lineages. Ultimately, definition of the cellular steps and molecular sequence that direct microvascular cell assembly promises to identify therapeutic targets for repair and adaptive remodeling of injured glomeruli.
Resumo:
Polydnaviruses (genera Ichnovirus and Bracovirus) have a segmented genome of circular double-stranded DNA molecules, replicate in the ovary of parasitic wasps and are essential for successful parasitism of the host. Here we show the first detailed analysis of various segments of a bracovirus, the Chelonus inanitus virus (CiV). Four segments were sequenced and two of them, CiV12 and CiV14, were found to be closely related while CiV14.5 and CiV16.8 were unrelated. CiV12, CiV14.5 and CiV16.8 are unique while CiV14 occurs also nested in another larger segment. All four segments are predicted to contain genes and predictions could be substantiated in most cases. Comparison with databases revealed no significant similarities at either the nucleotide or amino acid level. Inverted repeats with identities between 77% and 92% and lengths between 26 bp and 100 bp were found on all segments outside of predicted genes. Hybridization experiments indicate that CiV12 and CiV14 are both flanked by other virus segments, suggesting that proviral CiV segments are clustered in the genome of the wasp. The integration/excision site of CiV14 was analysed and compared to that of CiV12. On both termini of proviral CiV12 and CiV14 as well as in the excised circular molecule and the rejoined DNA a very similar repeat of 14 bp was found. A model to illustrate where the terminal repeats might recombine to yield the circular molecule is presented. Excision of CiV12 and CiV14 is restricted to the female and sets in at a very specific time-point in pupal-adult development.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.
Resumo:
Femtosecond Raman rotational coherence spectroscopy (RCS) detected by degenerate four-wave mixing is a background-free method that allows to determine accurate gas-phase rotational constants of non-polar molecules. Raman RCS has so far mostly been applied to the regular coherence patterns of symmetric-top molecules, while its application to nonpolar asymmetric tops has been hampered by the large number of RCS transient types, the resulting variability of the RCS patterns, and the 10³–10⁴ times larger computational effort to simulate and fit rotational Raman RCS transients. We present the rotational Raman RCS spectra of the nonpolar asymmetric top 1,4-difluorobenzene (para-difluorobenzene, p-DFB) measured in a pulsed Ar supersonic jet and in a gas cell over delay times up to ~2.5 ns. p-DFB exhibits rotational Raman transitions with ΔJ = 0, 1, 2 and ΔK = 0, 2, leading to the observation of J −, K −, A −, and C–type transients, as well as a novel transient (S–type) that has not been characterized so far. The jet and gas cell RCS measurements were fully analyzed and yield the ground-state (v = 0) rotational constants Aₒ = 5637.68(20) MHz, Bₒ = 1428.23(37) MHz, and Cₒ = 1138.90(48) MHz (1σ uncertainties). Combining the Aₒ, Bₒ, and Cₒ constants with coupled-cluster with single-, double- and perturbatively corrected triple-excitation calculations using large basis sets allows to determine the semi-experimental equilibrium bond lengths rₑ(C₁–C₂) = 1.3849(4) Å, rₑ(C₂–C³) = 1.3917(4) Å, rₑ(C–F) = 1.3422(3) Å, and rₑ(C₂–H₂) = 1.0791(5) Å.
Resumo:
The ratio of cystatin C (cysC) to creatinine (crea) is regarded as a marker of glomerular filtration quality associated with cardiovascular morbidities. We sought to determine reference intervals for serum cysC-crea ratio in seniors. Furthermore, we sought to determine whether other low-molecular weight molecules exhibit a similar behavior in individuals with altered glomerular filtration quality. Finally, we investigated associations with adverse outcomes. A total of 1382 subjectively healthy Swiss volunteers aged 60 years or older were enrolled in the study. Reference intervals were calculated according to Clinical & Laboratory Standards Institute (CLSI) guideline EP28-A3c. After a baseline exam, a 4-year follow-up survey recorded information about overall morbidity and mortality. The cysC-crea ratio (mean 0.0124 ± 0.0026 mg/μmol) was significantly higher in women and increased progressively with age. Other associated factors were hemoglobin A1c, mean arterial pressure, and C-reactive protein (P < 0.05 for all). Participants exhibiting shrunken pore syndrome had significantly higher ratios of 3.5-66.5 kDa molecules (brain natriuretic peptide, parathyroid hormone, β2-microglobulin, cystatin C, retinol-binding protein, thyroid-stimulating hormone, α1-acid glycoprotein, lipase, amylase, prealbumin, and albumin) and creatinine. There was no such difference in the ratios of very low-molecular weight molecules (urea, uric acid) to creatinine or in the ratios of molecules larger than 66.5 kDa (transferrin, haptoglobin) to creatinine. The cysC-crea ratio was significantly predictive of mortality and subjective overall morbidity at follow-up in logistic regression models adjusting for several factors. The cysC-crea ratio exhibits age- and sex-specific reference intervals in seniors. In conclusion, the cysC-crea ratio may indicate the relative retention of biologically active low-molecular weight compounds and can independently predict the risk for overall mortality and morbidity in the elderly.
Resumo:
On the orbiter of the Rosetta spacecraft, the Cometary Secondary Ion Mass Analyser (COSIMA) will provide new in situ insights about the chemical composition of cometary grains all along 67P/Churyumov–Gerasimenko (67P/CG) journey until the end of December 2015 nominally. The aim of this paper is to present the pre-calibration which has already been performed as well as the different methods which have been developed in order to facilitate the interpretation of the COSIMA mass spectra and more especially of their organic content. The first step was to establish a mass spectra library in positive and negative ion mode of targeted molecules and to determine the specific features of each compound and chemical family analyzed. As the exact nature of the refractory cometary organic matter is nowadays unknown, this library is obviously not exhaustive. Therefore this library has also been the starting point for the research of indicators, which enable to highlight the presence of compounds containing specific atom or structure. These indicators correspond to the intensity ratio of specific peaks in the mass spectrum. They have allowed us to identify sample containing nitrogen atom, aliphatic chains or those containing polyaromatic hydrocarbons. From these indicators, a preliminary calibration line, from which the N/C ratio could be derived, has also been established. The research of specific mass difference could also be helpful to identify peaks related to quasi-molecular ions in an unknown mass spectrum. The Bayesian Positive Source Separation (BPSS) technique will also be very helpful for data analysis. This work is the starting point for the analysis of the cometary refractory organic matter. Nevertheless, calibration work will continue in order to reach the best possible interpretation of the COSIMA observations.
Resumo:
With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.