49 resultados para air thickness, axial length, Lenstar, partial coherence interferometry, refractive index
Resumo:
Ex vivo porcine retina laser lesions applied with varying laser power (20 mW–2 W, 10 ms pulse, 196 lesions) are manually evaluated by microscopic and optical coherence tomography (OCT) visibility, as well as in histological sections immediately after the deposition of the laser energy. An optical coherence tomography system with 1.78 um axial resolution specifically developed to image thin retinal layers simultaneously to laser therapy is presented, and visibility thresholds of the laser lesions in OCT data and fundus imaging are compared. Optical coherence tomography scans are compared with histological sections to estimate the resolving power for small optical changes in the retinal layers, and real-time time-lapse scans during laser application are shown and analyzed quantitatively. Ultrahigh-resolution OCT inspection features a lesion visibility threshold 40–50 mW (17 reduction) lower than for visual inspection. With the new measurement system, 42 of the lesions that were invisible using state-of-the-art ophthalmoscopic methods could be detected.
Resumo:
BACKGROUND The pathomechanisms underlying very late stent thrombosis (VLST) after implantation of drug-eluting stents (DES) are incompletely understood. Using optical coherence tomography, we investigated potential causes of this adverse event. METHODS AND RESULTS Between August 2010 and December 2014, 64 patients were investigated at the time point of VLST as part of an international optical coherence tomography registry. Optical coherence tomography pullbacks were performed after restoration of flow and analyzed at 0.4 mm. A total of 38 early- and 20 newer-generation drug-eluting stents were suitable for analysis. VLST occurred at a median of 4.7 years (interquartile range, 3.1-7.5 years). An underlying putative cause by optical coherence tomography was identified in 98% of cases. The most frequent findings were strut malapposition (34.5%), neoatherosclerosis (27.6%), uncovered struts (12.1%), and stent underexpansion (6.9%). Uncovered and malapposed struts were more frequent in thrombosed compared with nonthrombosed regions (ratio of percentages, 8.26; 95% confidence interval, 6.82-10.04; P<0.001 and 13.03; 95% confidence interval, 10.13-16.93; P<0.001, respectively). The maximal length of malapposed or uncovered struts (3.40 mm; 95% confidence interval, 2.55-4.25; versus 1.29 mm; 95% confidence interval, 0.81-1.77; P<0.001), but not the maximal or average axial malapposition distance, was greater in thrombosed compared with nonthrombosed segments. The associations of both uncovered and malapposed struts with thrombus were consistent among early- and newer-generation drug-eluting stents. CONCLUSIONS The leading associated findings in VLST patients in descending order were malapposition, neoatherosclerosis, uncovered struts, and stent underexpansion without differences between patients treated with early- and new-generation drug-eluting stents. The longitudinal extension of malapposed and uncovered stent was the most important correlate of thrombus formation in VLST.
Resumo:
The introduction of spectral-domain optical coherence tomography (SD-OCT) has improved the clinical value for assessment of the eyes with macular disease. This article reviews the advances of SD-OCT for the diagnostic of various macular diseases. These include vitreomacular traction syndrome, cystoid macular edema/diabetic macular edema, epiretinal membranes, full-thickness macular holes, lamellar holes, pseudoholes, microholes, and schisis from myopia. Besides offering new insights into the pathogenesis of macular abnormalities, SD-OCT is a valuable tool for monitoring macular disease.
Resumo:
Aims To compare the tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent (ZES) vs. a fluoropolymer-coated everolimus-eluting stent (EES) at 13 months, using optical coherence tomography (OCT) in an ‘all-comers' population of patients, in order to clarify the mechanism of eventual differences in the biocompatibility and thrombogenicity of the devices. Methods and results Patients randomized to angiographic follow-up in the RESOLUTE All Comers trial (NCT00617084) at pre-specified OCT sites underwent OCT follow-up at 13 months. Tissue coverage and apposition were assessed strut by strut, and the results in both treatment groups were compared using multilevel logistic or linear regression, as appropriate, with clustering at three different levels: patient, lesion, and stent. Fifty-eight patients (30 ZES and 28 EES), 72 lesions, 107 stents, and 23 197 struts were analysed. Eight hundred and eighty-seven and 654 uncovered struts (7.4 and 5.8%, P= 0.378), and 216 and 161 malapposed struts (1.8 and 1.4%, P= 0.569) were found in the ZES and EES groups, respectively. The mean thickness of coverage was 116 ± 99 µm in ZES and 142 ± 113 µm in EES (P= 0.466). No differences in per cent neointimal volume obstruction (12.5 ± 7.9 vs. 15.0 ± 10.7%) or other areas–volumetric parameters were found between ZES and EES, respectively. Conclusion No significant differences in tissue coverage, malapposition, or lumen/stent areas and volumes were detected by OCT between the hydrophilic polymer-coated ZES and the fluoropolymer-coated EES at 13-month follow-up.
Resumo:
BACKGROUND: Visual symptoms are common in Parkinson's disease with studies consistently demonstrating reductions in visual acuity, contrast sensitivity, colour and motion perception as well as alterations in electroretinogram latencies and amplitudes. Optical coherence tomography can examine retinal structure non-invasively and retinal thinning has been suggested as a potential biomarker for neurodegeneration in Parkinson's disease. Our aim was to examine the retinal thickness of a cohort of Parkinson's disease subjects (and age-matched controls) to establish the practical utility of optical coherence tomography in a representative older Parkinson's disease group. METHODS: Fifty-one established Parkinson's disease subjects and 25 healthy controls were subjected to ophthalmological assessment and optical coherence tomography (Zeiss Stratus 3000â„¢) of macular thickness and volume and retinal nerve fibre thickness around the optic nerve head. Twenty four percent of control and 20% of Parkinson's disease subjects were excluded from final analysis due to co-morbid ocular pathology. Further data was excluded either due to poor tolerability of optical coherence tomography or poor quality scans. RESULTS: Despite a reduction in both visual acuity and contrast sensitivity in the residual evaluable Parkinson's disease cohort, we did not detect any differences between the two study groups for any measures of retinal thickness, in contrast to previously published work. CONCLUSIONS: In addition to technical problems inherent in the evaluation, the lack of difference between Parkinson's disease and healthy control subjects suggests longitudinal studies, employing newer techniques, will be required to define the role of optical coherence tomography as a potential diagnostic biomarker.
Resumo:
We investigated structural aspects of electron transfer (ET) in tunneling junctions (Au(1 1 1)vertical bar FcN vertical bar solution gap vertical bar Au STM tip) with four different redox-active N-thioalk(ano)ylferrocenes (FcN) embedded. The investigated molecules consist of a redox-active ferrocene (Fc) moiety connected via alkyl spacers with N = 4, 6, 8 and 11 carbon atoms to a thiol anchoring group. We found that for short FcNs (N = 4, 6,8) the redox-mediated ET response increases with the increase of the alkyl chain length, while no enhancement of the ET was observed for Fc1 1. The model of two-step ET with partial vibrational relaxation by Kuznetsov and Ulstrup was used to rationalize these results. The theoretical ET steps were assigned to two processes: (1) electron tunneling from the Fc group to the Au tip through the electrolyte layer and (2) electron transport from the Au(1 1 1) substrate to the Fc group through the organic adlayer. We argue that for the three short FcNs, the first process represents the rate-limiting step. The increase of the length of the alkyl chain leads to an approach of the Fc group to the STM tip, and consequently accelerates the first El' step. In case of the Fcl 1 junctions the rather high thickness of the organic layer leads to a decrease of the rate of the second ET step. In consequence, the contribution of the redox-mediated current enhancement to the total tunneling current appears to be insignificant. Our work demonstrates the importance of combined structural and transport approaches for the understanding of Er processes in electrochemical nanosystems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To analyze the biomechanical changes induced by partial lateral corpectomy (PLC) and a combination of PLC and hemilaminectomy in a T13-L3 spinal segment in nonchondrodystrophic dogs. STUDY DESIGN: In vitro biomechanical cadaveric study. SAMPLE POPULATION: T13-L3 spinal segments (n = 10) of nonchondrodystrophic dogs (weighing, 25-38 kg). METHODS: A computed tomography (CT) scan of each T13-L3 spinal segment was performed. A loading simulator for flexibility analysis was used to determine the range of motion (ROM) and neutral zone (NZ) during flexion/extension, lateral bending, and axial rotation. A servohydraulic testing machine was used to determine the changes in stiffness during compression, dorsoventral, and lateral shear. All spines were tested intact, after PLC in the left intervertebral space of L1-L2, and after a combination of PLC and hemilaminectomy. RESULTS: Statistically significant increases in ROM and NZ (P < .05) were detected during flexion/extension and lateral bending when PLC was performed. A significant increase in ROM (P < .001) was noted during axial rotation and flexion after PLC and hemilaminectomy. Stiffness decreased significantly during compression and dorsoventral shear after each procedure. Decreased stiffness during lateral shear was only significant after a combination of both procedures. CONCLUSION: PLC might lead to some spinal instability; these changes are enhanced when a hemilaminectomy is added.
Resumo:
The goal of this study was to describe the neointimal healing on the abluminal side (ABL) of malapposed (ISA) struts and nonapposed side-branch (NASB) struts in terms of coverage by optical coherence tomography (OCT) and in comparison with the adluminal side (ADL).
Resumo:
A major aim in lung transplantation is to prevent the loss of structural integrity due to ischemia and reperfusion (I/R) injury. Preservation solutions protect the lung against I/R injury to a variable extent. We compared the influence of two extracellular-type preservation solutions (Perfadex, or PX, and Celsior, or CE) on the morphological alterations induced by I/R. Pigs were randomly assigned to sham (n = 4), PX (n = 5), or CE (n = 2) group. After flush perfusion with PX or CE, donor lungs were excised and stored for 27 hr at 4 degrees C. The left donor lung was implanted into the recipient, reperfused for 6 hr, and, afterward, prepared for light and electron microscopy. Intra-alveolar, septal, and peribronchovascular edema as well as the integrity of the blood-air barrier were determined stereologically. Intra-alveolar edema was more pronounced in CE (219.80 +/- 207.55 ml) than in PX (31.46 +/- 15.75 ml). Peribronchovascular (sham: 13.20 +/- 4.99 ml; PX: 15.57 +/- 5.53 ml; CE: 31.56 +/- 5.78 ml) and septal edema (thickness of alveolar septal interstitium, sham: 98 +/- 33 nm; PX: 84 +/- 8 nm; CE: 249 +/- 85 nm) were only found in CE. The blood-air barrier was similarly well preserved in sham and PX but showed larger areas of swollen and fragmented epithelium or endothelium in CE. The present study shows that Perfadex effectively prevents intra-alveolar, septal, and peribronchovascular edema formation as well as injury of the blood-air barrier during I/R. Celsior was not effective in preserving the lung from morphological I/R injury.
Resumo:
PURPOSE: We determined and compared urethral pressure measurements using air charged and microtip catheters in a prospective, single-blind, randomized trial. MATERIALS AND METHODS: A consecutive series of 64 women referred for urodynamic investigation underwent sequential urethral pressure measurements using an air charged and a microtip catheter in randomized order. Patients were blinded to the type and sequence of catheter used. Agreement between the 2 catheter systems was assessed using the Bland and Altman 95% limits of agreement method. RESULTS: Intraclass correlation coefficients of air charged and microtip catheters for maximum urethral closure pressure at rest were 0.97 and 0.93, and for functional profile length they were 0.9 and 0.78, respectively. Pearson's correlation coefficients and Lin's concordance coefficients of air charged and microtip catheters were r = 0.82 and rho = 0.79 for maximum urethral closure pressure at rest, and r = 0.73 and rho = 0.7 for functional profile length, respectively. When applying the Bland and Altman method, air charged catheters gave higher readings than microtip catheters for maximum urethral closure pressure at rest (mean difference 7.5 cm H(2)O) and functional profile length (mean difference 1.8 mm). There were wide 95% limits of agreement for differences in maximum urethral closure pressure at rest (-24.1 to 39 cm H(2)O) and functional profile length (-7.7 to 11.3 mm). CONCLUSIONS: For urethral pressure measurement the air charged catheter is at least as reliable as the microtip catheter and it generally gives higher readings. However, air charged and microtip catheters cannot be used interchangeably for clinical purposes because of insufficient agreement. Hence, clinicians should be aware that air charged and microtip catheters may yield completely different results, and these differences should be acknowledged during clinical decision making.
Resumo:
OBJECTIVES: Dental erosion, the chemical dissolution of enamel without bacterial involvement, is a rarely reported manifestation of gastroesophageal reflux disease (GERD), as well as of recurrent vomiting and dietary habits. It leads to loss of tooth substance, hypersensitivity, functional impairment, and even tooth fracture. To date, dental erosions have been assessed using only very basic visual methods, and no evidence-based guidelines or studies exist regarding the prevention or treatment of GERD-related dental erosions. METHODS: In this randomized, double-blind study, we used optical coherence tomography (OCT) to quantify dental tissue demineralization and enamel loss before and after 3 weeks of acid-suppressive treatment with esomeprazole 20 mg b.i.d. or placebo in 30 patients presenting to the Berne University Dental Clinic with advanced dental erosions and abnormal acid exposure by 24-h esophageal pH manometry (defined as >4% of the 24-h period with pH<4). Enamel thickness, reflectivity, and absorbance as measures of demineralization were quantified by OCT before and after therapy at identical localizations on teeth with most severe visible erosions as well as several other predefined changes in teeth. RESULTS: The mean+/-s.e.m. decrease of enamel thickness of all teeth before and after treatment at the site of maximum exposure was 7.2+/-0.16 black trianglem with esomeprazole and 15.25+/-0.17black trianglem with placebo (P=0.013), representing a loss of 0.3% and 0.8% of the total enamel thickness, respectively. The change in optical reflectivity to a depth of 25 black trianglem after treatment was-1.122 +/-0.769 dB with esomeprazole and +2.059+/-0.534 dB with placebo (P 0.012), with increased reflectivity signifying demineralization. CONCLUSIONS: OCT non-invasively detected and quantified significantly diminished progression of dental tissue demineralization and enamel loss after only 3 weeks of treatment with esomeprazole 20 mg b.i.d. vs. placebo. This suggests that esomeprazole may be useful in counteracting progression of GERD-related dental erosions. Further validation of preventative treatment regimens using this sensitive detection method is required, including longer follow-up and correlation with quantitative reflux measures.
Resumo:
PURPOSE: Resonance frequency analysis (RFA) offers the opportunity to monitor the osseointegration of an implant in a simple, noninvasive way. A better comprehension of the relationship between RFA and parameters related to bone quality would therefore help clinicians improve diagnoses. In this study, a bone analog made from polyurethane foam was used to isolate the influences of bone density and cortical thickness in RFA. MATERIALS AND METHODS: Straumann standard implants were inserted in polyurethane foam blocks, and primary implant stability was measured with RFA. The blocks were composed of two superimposed layers with different densities. The top layer was dense to mimic cortical bone, whereas the bottom layer had a lower density to represent trabecular bone. Different densities for both layers and different thicknesses for the simulated cortical layer were tested, resulting in eight different block combinations. RFA was compared with two other mechanical evaluations of primary stability: removal torque and axial loading response. RESULTS: The primary stability measured with RFA did not correlate with the two other methods, but there was a significant correlation between removal torque and the axial loading response (P < .005). Statistical analysis revealed that each method was sensitive to different aspects of bone quality. RFA was the only method able to detect changes in both bone density and cortical thickness. However, changes in trabecular bone density were easier to distinguish with removal torque and axial loading than with RFA. CONCLUSIONS: This study shows that RFA, removal torque, and axial loading are sensitive to different aspects of the bone-implant interface. This explains the absence of correlation among the methods and proves that no standard procedure exists for the evaluation of primary stability.
Resumo:
To evaluate a new high-resolution noncontact biometer (Lenstar; Haag-Streit AG, Koeniz, Switzerland) using optical low-coherence reflectometry and to compare the clinical measurements with those obtained from the IOLMaster (Carl Zeiss, Jena, Germany) and the Pachmumeter (Haag-Streit AG).
Resumo:
OBJECTIVES The purpose of this study was to assess the occurrence, predictors, and mechanisms of optical coherence tomography (OCT)-detected coronary evaginations following drug-eluting stent (DES) implantation. BACKGROUND Angiographic ectasias and aneurysms in stented segments have been associated with a risk of late stent thrombosis. Using OCT, some stented segments show coronary evaginations reminiscent of ectasias. METHODS Evaginations were defined as outward bulges in the luminal contour between struts. They were considered major evaginations (MEs) when extending ≥3 mm along the vessel length, with a depth ≥10% of the stent diameter. A total of 228 patients who had sirolimus (SES)-, paclitaxel-, biolimus-, everolimus (EES)-, or zotarolimus (ZES)-eluting stents implanted in 254 lesions, were analysed after 1, 2, or 5 years; and serial assessment using OCT and intravascular ultrasound (IVUS) was performed post-intervention and after 1 year in 42 patients. RESULTS Major evaginations occurred frequently at all time points in SES (∼26%) and were rarely seen in EES (3%) and ZES (2%, P = 0.003). Sirolimus-eluting stent implantation was the strongest independent predictor of ME [adjusted OR (95% CI) 9.1 (1.1-77.4), P = 0.008]. Malapposed and uncovered struts were more common in lesions with vs. without ME (77 vs. 25%, P < 0.001 and 95 vs. 20%, P < 0.001, respectively) as was thrombus [49 vs. 14%, OR 7.3 (95% CI: 1.7-31.2), P = 0.007]. Post-intervention intra-stent dissection and protrusion of the vessel wall into the lumen were associated with an increased risk of evagination at follow-up [OR (95% CI): 2.9 (1.8-4.9), P < 0.001 and 3.3 (1.6-6.9), P = 0.001, respectively]. In paired IVUS analyses, lesions with ME showed a larger increase in the external elastic membrane area (20% area change) compared with lesions without ME (5% area change, P < 0.001). CONCLUSION Optical coherence tomography-detected MEs are a specific morphological footprint of early-generation SES and are nearly absent in newer-generation ZES and EES. Evaginations appear to be related to vessel injury at baseline; are associated with positive vessel remodelling; and correlate with uncoverage, malapposition, and thrombus at follow-up.
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.