21 resultados para Wood distillation
Resumo:
The technical definition of ‘wood’ is well accepted, but its botanical understanding remains vague. Different degrees and amounts of lignification in plants and their imprecise description, together with a conceptually doubtful life form catalog including trees, shrubs and herbs further complicate our understanding of ‘wood’. Here, we use permanent micro sections to demonstrate that the xylem and bark of terrestrial plants can vary from one tissue with a few lignified cells to an almost fully lignified tissue. This universal principle of plant growth and stabilization, accounting for all taxonomic units within vascular plants, suggests that the classical life form separation into herbs, shrubs and trees is not valid. An anatomical-based differentiation between ‘wood’, ‘woody’ and ‘woodiness’ is also only meaningful if supplemented by insight on the particular plant section and its lignified proportion. We therefore recommend utilizing the botanically more neutral term ‘stem anatomy’ instead of ‘wood anatomy’, which further implies integration of the xylem and bark of all terrestrial plants. Since dendrochronology considers shrubs, dwarf shrubs and perennial herbs in addition to trees, its semantic expansion toward ‘xylemchronology’ might be worthwhile considering.
Resumo:
Carbon emissions from anthropogenic land use (LU) and land use change (LUC) are quantified with a Dynamic Global Vegetation Model for the past and the 21st century following Representative Concentration Pathways (RCPs). Wood harvesting and parallel abandonment and expansion of agricultural land in areas of shifting cultivation are explicitly simulated (gross LUC) based on the Land Use Harmonization (LUH) dataset and a proposed alternative method that relies on minimum input data and generically accounts for gross LUC. Cumulative global LUC emissions are 72 GtC by 1850 and 243 GtC by 2004 and 27–151 GtC for the next 95 yr following the different RCP scenarios. The alternative method reproduces results based on LUH data with full transition information within <0.1 GtC/yr over the last decades and bears potential for applications in combination with other LU scenarios. In the last decade, shifting cultivation and wood harvest within remaining forests including slash each contributed 19% to the mean annual emissions of 1.2 GtC/yr. These factors, in combination with amplification effects under elevated CO2, contribute substantially to future emissions from LUC in all RCPs.
Resumo:
Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2:5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions frombiomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 μgm-3 during the campaign in January–February 2012. Measurements on a 160m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and K+ concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a background regional source overlaid by contributions from local domestic burning emissions. This could have implications when considering future emission control strategies during winter and may be the focus of future work in order to better determine the contributing local sources.
Resumo:
Residential wood combustion has only recently been recognized as a major contributor to air pollution in Switzerland and in other European countries. A source apportionment method using the aethalometer light absorption parameters was applied to five winter campaigns at three sites in Switzerland: a village with high wood combustion activity in winter, an urban background site and a highway site. The particulate mass from traffic (PMtraffic) and wood burning (PMwb) emissions obtained with this model compared fairly well with results from the 14C source apportionment method. PMwb from the model was also compared to well known wood smoke markers such as anhydrosugars (levoglucosan and mannosan) and fine mode potassium, as well as to a marker recently suggested from the Aerodyne aerosol mass spectrometer (mass fragment m/z 60). Additionally the anhydrosugars were compared to the 14C results and were shown to be comparable to literature values from wood burning emission studies using different types of wood (hardwood, softwood). The levoglucosan to PMwb ratios varied much more strongly between the different campaigns (4–13%) compared to mannosan to PMwb with a range of 1–1.5%. Possible uncertainty aspects for the various methods and markers are discussed.
Resumo:
Eight species of wood-inhabiting basidiomycetes (Laurilia sulcata, Peniophora aurantiaca, Resinicium bicolor, Scytinostroma galactinum, Terana caerulea, Trichaptum abietinum, T. biforme and T. fuscoviolaceum) were used in a spore-trapping test to evaluate their individual ability for long-distance spore dispersal. Petri dishes with single spore mycelia were used as baits. In the experiment, carried out at the Botanical Institute in Göteborg, spores from the air were regularly captured. Surprisingly, spores were captured from species whose nearest known natural occurrence was located quite far from Göteborg. The closest population of Peniophora aurantiaca is about 1000 km south of Göteborg. The results from this experiment support the hypothesis that fungal spores are widely and efficiently dispersed. Such a broad and extensive dispersal ability is of vital importance, especially for wood-inhabiting species which are highly dependent on a substrate which is onlv temporarily available.