77 resultados para Whole-blood
Resumo:
For driving aptitude assessment (DAA), the analysis of several alcohol biomarkers is essential for the detection of alcohol intake besides psycho-medical exploration. In Switzerland, EtG in hair (hEtG) is often the only direct marker for abstinence monitoring in DAA. Therefore, the suitability of phosphatidylethanol (PEth) was investigated as additional biomarker. PEth 16:0/18:1 and 16:0/18:2 were determined by online-SPE-LC-MS/MS in 136 blood samples of persons undergoing DAA and compared to hEtG, determined in hair segments taken at the same time. With a PEth 16:0/18:1 threshold of 210 ng/mL for excessive alcohol consumption, all (n = 30) but one tested person also had hEtG values ≥30 pg/mg. In 54 cases, results are not in contradiction to an abstinence as neither PEth (<20 ng/mL) nor hEtG (<7 pg/mg) was detected. In eight cases, both markers showed moderate consumption. Altogether, PEth and hEtG were in accordance in 68 % of the samples, although covering different time periods of alcohol consumption. With receiver operating characteristic analysis, PEth was evaluated to differentiate abstinence, moderate, and excessive alcohol consumption in accordance with hEtG limits. A PEth 16:0/18:1 threshold of 150 ng/mL resulted in the best sensitivity (70.6 %) and specificity (98.8 %) for excessive consumption. Values between 20 and 150 ng/mL passed for moderate consumption, values <20 ng/mL passed for abstinence. As PEth mostly has a shorter detection window (2-4 weeks) than hEtG (up to 6 months depending on hair length), changes in drinking behavior can be detected earlier by PEth than by hEtG analysis alone. Therefore, PEth helps to improve the diagnostic information and is a valuable additional alcohol marker for DAA.
Resumo:
Successful extremity transplantations and replantations have to be performed within 6 h of amputation to avoid irreversible tissue loss. This study investigates ex vivo the technical feasibility and the limb preservation potential of extracorporeal whole blood perfusion in a porcine model.
Resumo:
This study aims to show that sensitive detection of ethyl glucuronide in dried blood spotted onto various surfaces after a period of 24h is feasible. At present, there is insufficient information how tightly ethyl glucuronide (EtG) binds to various materials and how easily it can be eluted. 4ml aliquots of blood samples obtained from seven volunteers after consumption of alcoholic beverages were applied to six different surfaces. After drying and a 24h-storage at 20±2°C the samples were re-dissolved in water, and EtG was subsequently analyzed by a LC-MS Paul-type ion trap. A comparison was made between dried and corresponding fluid samples. EtG was detectable in all subjects' samples following consumption of alcohol. EtG was also detectable after a storage time of four weeks at 4°C in whole blood that had been preserved with EDTA. EtG was detectable in all samples dried on different surfaces and its concentration remained relatively constant irrespective of the particular condition of the material. Detection of EtG in blood spots from the scene may indicate recent alcohol consumption in cases where collection of blood remained undone or could not be performed.
Resumo:
A universal and robust analytical method for the determination of Δ9-tetrahydrocannabinol (THC) and two of its metabolites Δ9-(11-OH)-tetrahydrocannabinol (11-OH-THC) and 11-nor-Δ9-carboxy-tetrahydrocannabinol (THC-COOH) in human whole blood was developed and validated for use in forensic toxicology. Protein precipitation, integrated solid phase extraction and on-line enrichment followed by high-performance liquid chromatography separation and detection with a triple quadrupole mass spectrometer were combined. The linear ranges used for the three cannabinoids were from 0.5 to 20 ng/mL for THC and 11-OH-THC and from 2.5 to 100 ng/mL for THC-COOH, therefore covering the requirements for forensic use. Correlation coefficients of 0.9980 or better were achieved for all three analytes. No relevant hydrolysis was observed for THC-COOH glucuronide with this procedure--in contrast to our previous GC-MS procedure, which obviously lead to an artificial increase of the THC-COOH concentration due to the hydrolysis of the glucuronide-conjugate occurring at high pH during the phase-transfer catalyzed methylation step.
Resumo:
We examined the magnitude of 20-min moderate exercise-induced platelet activation in 50 volunteers with normal (n=31) or elevated blood pressure (EBP; n=19). Blood was drawn before, immediately after, and 25 min after exercise. Antibody-staining for platelet activation markers, P-selectin, and fibrinogen receptors was done with and without adenosine diphosphate (ADP) stimulation in whole blood for flow cytometric analyses. Exercise led to increases in percent aggregated platelets and percent platelets expressing P-selectin or PAC-1 binding (ps< or =.001). This increase in percent platelets expressing P-selectin continued even after a 25-min rest only in the EBP group (p< or =.01) accompanied by an increase in percent of aggregated platelets (p< or =.05). Although ADP stimulation led to increased platelet activation at rest, it was attenuated following exercise, even among EBP individuals. A moderate exercise challenge induced prolonged platelet activation in individuals with EBP but attenuation in activation to further stimulation by an agonist. Findings suggest that a recovery period after physical stress appears critical in individuals with high BP regarding platelet activation and aggregation, which can lead to an acute coronary syndrome in vulnerable individuals.
Resumo:
The range of novel psychoactive substances (NPS) including phenethylamines, cathinones, piperazines, tryptamines, etc. is continuously growing. Therefore, fast and reliable screening methods for these compounds are essential and needed. The use of dried blood spots (DBS) for a fast straightforward approach helps to simplify and shorten sample preparation significantly. DBS were produced from 10 µl of whole blood and extracted offline with 500 µl methanol followed by evaporation and reconstitution in mobile phase. Reversed-phase chromatographic separation and mass spectrometric detection (RP-LC-MS/MS) was achieved within a run time of 10 min. The screening method was validated by evaluating the following parameters: limit of detection (LOD), matrix effect, selectivity and specificity, extraction efficiency, and short-term and long-term stability. Furthermore, the method was applied to authentic samples and results were compared with those obtained with a validated whole blood method used for Routine analysis of NPS. LOD was between 1 and 10 ng/ml. No interference from Matrix compounds was observed. The method was proven to be specific and selective for the analytes, although with limitations for 3-FMC/flephedrone and MDDMA/MDEA. Mean extraction efficiency was 84.6 %. All substances were stable in DBS for at least a week when cooled. Cooling was essential for the stability of cathinones. Prepared samples were stable for at least 3 days. Comparison to the validated whole blood method yielded similar results. DBS were shown to be useful in developing a rapid screening method for NPS with simplified sample preparation. Copyright © 2013 John Wiley & Sons, Ltd
Resumo:
BACKGROUND: Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are non-oxidative minor metabolites of ethanol. They are detectable in various body fluids shortly after initial consumption of ethanol and have a longer detection time frame than the parent compound. They are regarded highly sensitive and specific markers of recent alcohol uptake. This study evaluates the determination of EtG and EtS from dried blood spots (DBS), a simple and cost-effective sampling method that would shorten the time gap between offense and blood sampling and lead to a better reflectance of the actual impairment. METHODS: For method validation, EtG and EtS standard and quality control samples were prepared in fresh human heparinized blood and spotted on DBS cards, then extracted and measured by an LC-ESI-MS/MS method. Additionally, 76 heparinized blood samples from traffic offense cases were analyzed for EtG and EtS as whole blood and as DBS specimens. The results from these measurements were then compared by calculating the respective mean values, by a matched-paired t test, by a Wilcoxon test, and by Bland-Altman and Mountain plots. RESULTS AND DISCUSSION: Calibrations for EtG and EtS in DBS were linear over the studied calibration range. The precision and accuracy of the method met the requirements of the validation guidelines that were employed in the study. The stability of the biomarkers stored as DBS was demonstrated under different storage conditions. The t test showed no significant difference between whole blood and DBS in the determination of EtG and EtS. In addition, the Bland-Altman analysis and Mountain plot confirmed that the concentration differences that were measured in DBS specimens were not relevant.
Resumo:
Acute psychosocial stress stimulates transient increases in circulating pro-inflammatory plasma cytokines, but little is known about stress effects on anti-inflammatory cytokines or underlying mechanisms. We investigated the stress kinetics and interrelations of pro- and anti-inflammatory measures on the transcriptional and protein level. Forty-five healthy men were randomly assigned to either a stress or control group. While the stress group underwent an acute psychosocial stress task, the second group participated in a non-stress control condition. We repeatedly measured before and up to 120min after stress DNA binding activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, whole-blood mRNA levels of NF-κB, its inhibitor IκBα, and of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6, and the anti-inflammatory cytokine IL-10. We also repeatedly measured plasma levels of IL-1ß, IL-6, and IL-10. Compared to non-stress, acute stress induced significant and rapid increases in NF-κB-BA and delayed increases in plasma IL-6 and mRNA of IL-1ß, IL-6, and IκBα (p's<.045). In the stress group, significant increases over time were also observed for NF-κB mRNA and plasma IL-1ß and IL-10 (p's<.055). NF-κB-BA correlated significantly with mRNA of IL-1β (r=.52, p=.002), NF-κB (r=.48, p=.004), and IκBα (r=.42, p=.013), and marginally with IL-6 mRNA (r=.31, p=.11). Plasma cytokines did not relate to NF-κB-BA or mRNA levels of the respective cytokines. Our data suggest that stress induces increases in NF-κB-BA that relate to subsequent mRNA expression of pro-inflammatory, but not anti-inflammatory cytokines, and of regulatory-cytoplasmic-proteins. The stress-induced increases in plasma cytokines do not seem to derive from de novo synthesis in circulating blood cells.
Resumo:
Drug-drug interaction between statins metabolised by cytochrome P450 3A4 and clopidogrel have been claimed to attenuate the inhibitory effect of clopidogrel. However, published data regarding this drug-drug interaction are controversial. We aimed to determine the effect of fluvastatin and atorvastatin on the inhibitory effect of dual antiplatelet therapy with acetylsalicylic acid (ASA) and clopidogrel. One hundred one patients with symptomatic stable coronary artery disease undergoing percutaneous coronary intervention and drug-eluting stent implantation were enrolled in this prospective randomised study. After an interval of two weeks under dual antiplatelet therapy with ASA and clopidogrel, without any lipid-lowering drug, 87 patients were randomised to receive a treatment with either fluvastatin 80 mg daily or atorvastatin 40 mg daily in addition to the dual antiplatelet therapy for one month. Platelet aggregation was assessed using light transmission aggregometry and whole blood impedance platelet aggregometry prior to randomisation and after one month of receiving assigned statin and dual antiplatelet treatment. Platelet function assessment after one month of statin and dual antiplatelet therapy did not show a significant change in platelet aggregation from 1st to 2nd assessment for either statin group. There was also no difference between atorvastatin and fluvastatin treatment arms. In conclusion, neither atorvastatin 40 mg daily nor fluvastatin 80 mg daily administered in combination with standard dual antiplatelet therapy following coronary drug-eluting stent implantation significantly interfere with the antiaggregatory effect of ASA and clopidogrel.
Resumo:
Phosphatidylethanol (PEth) is a direct ethanol metabolite, and has recently attracted attention as biomarker of ethanol intake. The aims of the current study are: (1) to characterize the normalization time of PEth in larger samples than previously conducted; (2) to elucidate potential gender differences; and (3) to report the correlation of PEth with other biomarkers and self-reported alcohol consumption. Fifty-seven alcohol-dependent patients (ICD 10 F 10.25; 9 females, 48 males) entering medical detoxification at three study sites were enrolled. The study sample was comprised of 48 males and 9 females, with mean age 43.5. Mean gamma glutamyl transpeptidase (GGT) was 209.61 U/l, average mean corpuscular volume (MCV) was 97.35 fl, mean carbohydrate deficient transferrin (%CDT) was 8.68, and mean total ethanol intake in the last 7 days was 1653 g. PEth was measured in heparinized whole blood with a high-pressure liquid chromatography method, while GGT, MCV and %CDT were measured using routine methods. PEth levels at day 1 of detoxification ranged between 0.63 and 26.95 micromol/l (6.22 mean, 4.70 median, SD 4.97). There were no false negatives at day 1. Sensitivities for the other biomarkers were 40.4% for MCV, 73.1% for GGT and 69.2% for %CDT, respectively. No gender differences were found for PEth levels at any time point. Our data suggest that PEth is (1) a suitable intermediate term marker of ethanol intake in both sexes; and (2) sensitivity is extraordinary high in alcohol dependent patients. The results add further evidence to the data that suggest that PEth has potential as a candidate for a sensitive and specific biomarker, which reflects longer-lasting intake of higher amounts of alcohol and seemingly has the above mentioned certain advantages over traditional biomarkers.
Effect of sibling competition and male carotenoid supply on offspring condition and oxidative stress
Resumo:
Early developmental conditions have major implications for an individual's fitness. In species where offspring are born simultaneously, the level of sibling competition for food access is intense. In birds, high sibling competition may subject nestlings to decreased growth rate as a result of limited food and increased levels of oxidative stress through high metabolic activity induced by begging behaviors. We manipulated the level of sibling competition in a natural population of great tits and assessed the consequences for nestling body condition and resistance to oxidative stress. In a full factorial design, we both augmented brood size to increase sibling competition and supplemented the male parents with physiological doses of carotenoids thereby doubling the natural carotenoid intake, aiming at increasing the males' investment in current reproduction and thereby decreasing sibling competition. Nestling body mass was reduced by the brood enlargement and enhanced by the carotenoid supplementation of fathers. Nestling resistance to oxidative stress, measured as total antioxidant defenses in whole blood, was not influenced by the treatments. Because nestlings experience high metabolic activities, an absence of an effect of sibling competition on free radicals production seems unlikely. Nestling body mass decreased and resistance to oxidative stress tended to increase with initial brood size, and hence these correlational effects suggest a trade-off between morphological growth and development of the antioxidant system. However, the result of the experimental treatment did not support this trade-off hypothesis. Alternatively, it suggests that nestling developed compensatory mechanisms that were not detected by our antioxidant capacity measure.
Resumo:
Background Polymorphonuclear neutrophils (PMN) play a key role in host defences against invading microorganisms but can also potentiate detrimental inflammatory reactions in case of excessive or misdirected responses. Intravenous immunoglobulins (IVIg) are used to treat patients with immune deficiencies and, at higher doses, in autoimmune, allergic and systemic inflammatory disorders. Methodology/Principal Findings We used flow cytometry to examine the effects of IVIg on PMN functions and survival, using whole-blood conditions in order to avoid artifacts due to isolation procedures. IVIg at low concentrations induced PMN activation, as reflected by decreased L-selectin and increased CD11b expression at the PMN surface, oxidative burst enhancement, and prolonged cell survival. In contrast, IVIg at higher concentrations inhibited LPS-induced CD11b degranulation and oxidative burst priming, and counteracted LPS-induced PMN lifespan prolongation. Conclusions/Significance IVIg appears to have differential, concentration-dependent effects on PMN, possibly supporting the use of IVIg as either an anti-microbial or an anti-inflammatory agent.
Resumo:
Background: Alcohol is heavily consumed in sub-Saharan Africa and affects HIV transmission and treatment and is difficult to measure. Our goal was to examine the test characteristics of a direct metabolite of alcohol consumption, phosphatidylethanol (PEth). Methods: Persons infected with HIV were recruited from a large HIV clinic in southwestern Uganda. We conducted surveys and breath alcohol concentration (BRAC) testing at 21 daily home or drinking establishment visits, and blood was collected on day 21 (n = 77). PEth in whole blood was compared with prior 7-, 14-, and 21-day alcohol consumption. Results: (i) The receiver operator characteristic area under the curve (ROC-AUC) was highest for PEth versus any consumption over the prior 21 days (0.92; 95% confidence interval [CI]: 0.86 to 0.97). The sensitivity for any detectable PEth was 88.0% (95% CI: 76.0 to 95.6) and the specificity was 88.5% (95% CI: 69.8 to 97.6). (ii) The ROC-AUC of PEth versus any 21-day alcohol consumption did not vary with age, body mass index, CD4 cell count, hepatitis B virus infection, and antiretroviral therapy status, but was higher for men compared with women (p = 0.03). (iii) PEth measurements were correlated with several measures of alcohol consumption, including number of drinking days in the prior 21 days (Spearman r = 0.74, p < 0.001) and BRAC (r = 0.75, p < 0.001). Conclusions: The data add support to the body of evidence for PEth as a useful marker of alcohol consumption with high ROC-AUC, sensitivity, and specificity. Future studies should further address the period and level of alcohol consumption for which PEth is detectable.
Resumo:
: Sepsis-associated changes of the arachidonic acid metabolism and the utility of arachidonic acid metabolites for the diagnosis of sepsis have been poorly investigated so far. Therefore, the primary objective of our study was to screen for differentially regulated arachidonic acid metabolites in septic patients using a lipopolysaccharide whole-blood model and to investigate their diagnostic potential.
Resumo:
The rhizome of ginger (Zingiber officinale) is employed in Asian traditional medicine to treat mild forms of rheumatoid arthritis and fever. We have profiled ginger constituents for robust effects on proinflammatory signaling and cytokine expression in a validated assay using human whole blood. Independent of the stimulus used (LPS, PMA, anti-CD28 Ab, anti-CD3 Ab, and thapsigargin), ginger constituents potently and specifically inhibited IL-1β expression in monocytes/macrophages. Both the calcium-independent phospholipase A(2) (iPLA(2))-triggered maturation and the cytosolic phospholipase A(2) (cPLA(2))-dependent secretion of IL-1β from isolated human monocytes were inhibited. In a fluorescence-coupled PLA(2) assay, most major ginger phenylpropanoids directly inhibited i/cPLA(2) from U937 macrophages, but not hog pancreas secretory phospholipase A(2). The effects of the ginger constituents were additive and the potency comparable to the mechanism-based inhibitor bromoenol lactone for iPLA(2) and methyl arachidonyl fluorophosphonate for cPLA(2), with 10-gingerol/-shogaol being most effective. Furthermore, a ginger extract (2 μg/ml) and 10-shogaol (2 μM) potently inhibited the release of PGE(2) and thromboxane B2 (>50%) and partially also leukotriene B(4) in LPS-stimulated macrophages. Intriguingly, the total cellular arachidonic acid was increased 2- to 3-fold in U937 cells under all experimental conditions. Our data show that the concurrent inhibition of iPLA(2) and prostanoid production causes an accumulation of free intracellular arachidonic acid by disrupting the phospholipid deacylation-reacylation cycle. The inhibition of i/cPLA(2), the resulting attenuation of IL-1β secretion, and the simultaneous inhibition of prostanoid production by common ginger phenylpropanoids uncover a new anti-inflammatory molecular mechanism of dietary ginger that may be exploited therapeutically.