23 resultados para Water Engineering
Resumo:
The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a network of ground-based remote sensing instruments to synthesize hemispheric maps of water vapor.
Resumo:
The microwave radiometer TROWARA measures integrated water vapour (IWV) and integrated cloud liquid water (ILW) at Bern since 1994 with a time resolution of 7 s. In this study, we compare TROWARA measurements with a simulation of summer 2012 in Switzerland performed with the Weather Research and Forecasting (WRF) model. It is found that the WRF model agrees very well with TROWARA’s IWV variations with a mean bias of only 0.7 mm. The ILW distribution of the WRF model, although similar in shape to TROWARA’s distribution, overestimates the fraction of clear sky periods (83% compared to 60%).
Resumo:
Direct sublimation of a comet nucleus surface is usually considered to be the main source of gas in the coma of a comet. However, evidence from a number of comets including the recent spectacular images of Comet 103P/Hartley 2 by the EPOXI mission indicates that the nucleus alone may not be responsible for all, or possibly at times even most, of the total amount of gas seen in the coma. Indeed, the sublimation of icy grains, which have been injected into the coma, appears to constitute an important source. We use the fully-kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J., 685, 659−677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J., 732) to reproduce the measurements of column density and rotational temperature of water in Comet 73P-B/Schwassmann–Wachmann 3 obtained with a very high spatial resolution of ∼30 km using IRCS/Subaru in May 2006 (Bonev, B.P., Mumma, M.J., Kawakita, H., Kobayashi, H., Villanueva, G.L. [2008]. Icarus, 196, 241−248). For gas released solely from the cometary nucleus at a heliocentric distance of 1 AU, modeled rotational temperatures start at 110 K close to the surface and decrease to only several tens of degrees by 10–20 nucleus radii. However, the measured decay of both rotational temperature and column density with distance from the nucleus is much slower than predicted by this simple model. The addition of a substantial (distributed) source of gas from icy grains in the model slows the decay in rotational temperature and provides a more gradual drop in column density profiles. Together with a contribution of rotational heating of water molecules by electrons, the combined effects allow a much better match to the IRCS/Subaru observations. From the spatial distributions of water abundance and temperature measured in 73P/SW3-B, we have identified and quantified multiple mechanisms of release. The application of this tool to other comets may permit such studies over a range of heliocentric and geocentric distances.
Resumo:
The jet activity emanating from Enceladus' exosphere south pole region observed by Cassini is a subject of intensive study. The in situ and remote sensing observations performed since 2005 triggered an active modeling campaign. Such modeling is essential for better understanding of the measurements performed by individual instruments as well as to link them for a more complete picture of the volatile and ice grain distribution in Enceladus' exosphere. This paper is focused on the investigation of the effect that diffuse gas sources along the Tiger Stripes have on distribution of the water vapor in Enceladus' exosphere using the updated version of our multiplume model. We have found that accounting for the gas production by Tiger Stripes is critical for interpretation of the Cassini data. According to our calculations, sources along the Tiger Stripes (apart from those originally identified by Spitale and Porco (2007)) must contribute about 23–32% to the total plume source rate, which varies in the range of (6.4–29) ×1027 s−1. The effect of the previously unidentified source suggested in the paper is found to be critical for explaining the Ultraviolet Imaging Spectrograph 2007 and 2010 observations in the whole range of the elapsed times.
Resumo:
The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.
Resumo:
Many studies investigated solar–terrestrial responses (thermal state, O₃ , OH, H₂O) with emphasis on the tropical upper atmosphere. In this paper the Focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88°N/7.46°E) are investigated to study oscillations with the Focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼64 km) during the rising sun spot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations Support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing thesi-milarity of their temporal oscillations. The H₂O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to −0.3 to −0.4, and the Phase lag is 6–10 days at 0.04 hPa. The confidence level of the correlation is ≥99%. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photo dissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC)complete our study. More periods of high common wavelet power of H₂O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level)correlations occur intermittently in the 27 and 13-day band with variable Phase lock behavior. Large Lyman-α oscillations appeared after the solar super storm in July 2012 and the H₂O oscillations show a well pronounced anticorrelation. The competition between advective transport and photo dissociation loss of mesospheric water vapor may explain the sometimes variable Phase relationship of mesospheric H₂O and solar Lyman-α oscillations. Generally, the WTC analysis indicates that solar variability causes observable photochemical and dynamical processes in the mid-latitude mesosphere.