63 resultados para Warm deformation
Resumo:
Vertebral cement augmentation can restore the stiffness and strength of a fractured vertebra and relieve chronic pain. Previous finite element analysis, biomechanical tests and clinical studies have indirectly associated new adjacent vertebral fractures following augmentation to altered loading. The aim of this repeated measures in situ biomechanical study was to determine the changes in the adjacent and augmented endplate deformation following cement augmentation of human cadaveric functional spine units (FSU) using micro-computed tomography (micro-CT). The surrounding soft tissue and posterior elements of 22 cadaveric human FSU were removed. FSU were assigned to two groups, control (n = 8) (loaded on day 1 and day 2) and augmented (n = 14) (loaded on day 1, augmented 20% cement fill, and loaded on day 2). The augmented group was further subdivided into a prophylactic augmentation group (n = 9), and vertebrae which spontaneously fractured during loading on day 1 (n = 5). The FSU were axially loaded (200, 1,000, 1,500-2,000 N) within a custom made radiolucent, saline filled loading device. At each loading step, FSUs were scanned using the micro-CT. Endplate heights were determined using custom software. No significant increase in endplate deformation following cement augmentation was noted for the adjacent endplate (P > 0.05). The deformation of the augmented endplate was significantly reduced following cement augmentation for both the prophylactic and fracture group (P < 0.05, P < 0.01, respectively). Endplate deformation of the controls showed no statistically significant differences between loading on day 1 and day 2. A linear relationship was noted between the applied compressive load and endplate deflection (R (2) = 0.58). Evidence of significant endplate deformation differences between unaugmented and augmented FSU, while evident for the augmented endplate, was not present for the adjacent endplate. This non-invasive micro-CT method may also be useful to investigate endplate failure, and parameters that predict vertebral failure.
Resumo:
Reconstruction of a cleft lip leads inevitably to scar tissue formation. Scar tissue within the restored oral orbicular muscle might be assessed by quantification of the local contractility of this muscle. Furthermore, information about the contraction capability of the oral orbicular muscle is crucial for planning the revision surgery of an individual patient. We used ultrasound elastography to determine the local deformation (strain) of the upper lip and to differentiate contracting muscle from passive scar tissue. Raw ultrasound data (radio-frequency format; rf-) were acquired, while the lips were brought from normal state into a pout condition and back in normal state, in three patients and three normal individuals. During this movement, the oral orbicular muscle contracts and, consequently, thickens in contrast to scar tissue that will not contract, or even expand. An iterative coarse-to-fine strain estimation method was used to calculate the local tissue strain. Analysis of the raw ultrasound data allows estimation of tissue strain with a high precision. The minimum strain that can be assessed reproducibly is 0.1%. In normal individuals, strain of the orbicular oral muscle was in the order of 20%. Also, a uniform strain distribution in the oral orbicular muscle was found. However, in patients deviating values were found in the region of the reconstruction and the muscle tissue surrounding that. In two patients with a successful reconstruction, strain was reduced by 6% in the reconstructed region with respect to the normal parts of the muscle (from 22% to 16% and from 25% to 19%). In a patient with severe aesthetical and functional disability, strain decreased from 30% in the normal region to 5% in the reconstructed region. With ultrasound elastography, the strain of the oral orbicular muscle can be quantified. In healthy subjects, the strain profiles and maximum strain values in all parts of the muscle were similar. The maximum strain of the muscle during pout was 20% +/- 1%. In surgically repaired cleft lips, decreased deformation was observed.
Resumo:
OBJECTIVE: The effects of mechanical deformation of intact cartilage tissue on chondrocyte biosynthesis in situ have been well documented, but the mechanotransduction pathways that regulate such phenomena have not been elucidated completely. The goal of this study was to examine the effects of tissue deformation on the morphology of a range of intracellular organelles which play a major role in cell biosynthesis and metabolism. DESIGN: Using chemical fixation, high pressure freezing, and electron microscopy, we imaged chondrocytes within mechanically compressed cartilage explants at high magnification and quantitatively and qualitatively assessed changes in organelle volume and shape caused by graded levels of loading. RESULTS: Compression of the tissue caused a concomitant reduction in the volume of the extracellular matrix (ECM), chondrocyte, nucleus, rough endoplasmic reticulum, and mitochondria. Interestingly, however, the Golgi apparatus was able to resist loss of intraorganelle water and retain a portion of its volume relative to the remainder of the cell. These combined results suggest that a balance between intracellular mechanical and osmotic gradients govern the changes in shape and volume of the organelles as the tissue is compressed. CONCLUSIONS: Our results lead to the interpretive hypothesis that organelle volume changes appear to be driven mainly by osmotic interactions while shape changes are mediated by structural factors, such as cytoskeletal interactions that may be linked to extracellular matrix deformations. The observed volume and shape changes of the chondrocyte organelles and the differential behavior between organelles during tissue compression provide evidence for an important mechanotransduction pathway linking translational and post-translational events (e.g., elongation and sulfation of glycosaminoglycans (GAGs) in the Golgi) to cell deformation.
Resumo:
OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.
Resumo:
High-resolution, well-calibrated records of lake sediments are critically important for quantitative climate reconstructions, but they remain a methodological and analytical challenge. While several comprehensive paleotemperature reconstructions have been developed across Europe, only a few quantitative high-resolution studies exist for precipitation. Here we present a calibration and verification study of lithoclastic sediment proxies from proglacial Lake Oeschinen (46°30′N, 7°44′E, 1,580 m a.s.l., north–west Swiss Alps) that are sensitive to rainfall for the period AD 1901–2008. We collected two sediment cores, one in 2007 and another in 2011. The sediments are characterized by two facies: (A) mm-laminated clastic varves and (B) turbidites. The annual character of the laminae couplets was confirmed by radiometric dating (210Pb, 137Cs) and independent flood-layer chronomarkers. Individual varves consist of a dark sand-size spring-summer layer enriched in siliciclastic minerals and a lighter clay-size calcite-rich winter layer. Three subtypes of varves are distinguished: Type I with a 1–1.5 mm fining upward sequence; Type II with a distinct fine-sand base up to 3 mm thick; and Type III containing multiple internal microlaminae caused by individual summer rainstorm deposits. Delta-fan surface samples and sediment trap data fingerprint different sediment source areas and transport processes from the watershed and confirm the instant response of sediment flux to rainfall and erosion. Based on a highly accurate, precise and reproducible chronology, we demonstrate that sediment accumulation (varve thickness) is a quantitative predictor for cumulative boreal alpine spring (May–June) and spring/summer (May–August) rainfall (rMJ = 0.71, rMJJA = 0.60, p < 0.01). Bootstrap-based verification of the calibration model reveals a root mean squared error of prediction (RMSEPMJ = 32.7 mm, RMSEPMJJA = 57.8 mm) which is on the order of 10–13 % of mean MJ and MJJA cumulative precipitation, respectively. These results highlight the potential of the Lake Oeschinen sediments for high-resolution reconstructions of past rainfall conditions in the northern Swiss Alps, central and eastern France and south-west Germany.
Resumo:
Purpose: To quantify the in vivo deformations of the popliteal artery during leg flexion in subjects with clinically relevant peripheral artery disease (PAD). Methods: Five patients (4 men; mean age 69 years, range 56–79) with varying calcification levels of the popliteal artery undergoing endovascular revascularization underwent 3-dimensional (3D) rotational angiography. Image acquisition was performed with the leg straight and with a flexion of 70°/20° in the knee/hip joints. The arterial centerline and the corresponding branches in both positions were segmented to create 3D reconstructions of the arterial trees. Axial deformation, twisting, and curvatures were quantified. Furthermore, the relationships between the calcification levels and the deformations were investigated. Results: An average shortening of 5.9%±2.5% and twist rate of 3.8±2.2°/cm in the popliteal artery were observed. Maximal curvatures in the straight and flexed positions were 0.12±0.04 cm−1 and 0.24±0.09 cm−1, respectively. As the severity of calcification increased, the maximal curvature in the straight position increased from 0.08 to 0.17 cm−1, while an increase from 0.17 to 0.39 cm−1 was observed for the flexed position. Axial elongations and arterial twisting were not affected by the calcification levels. Conclusion: The popliteal artery of patients with symptomatic PAD is exposed to significant deformations during flexion of the knee joint. The severity of calcification directly affects curvature, but not arterial length or twisting angles. This pilot study also showed the ability of rotational angiography to quantify the 3D deformations of the popliteal artery in patients with various levels of calcification.