73 resultados para Visibility distance.
Resumo:
BACKGROUND: Pericard 6 (P6) is one of the most frequently used acupuncture points, especially in preventing nausea and vomiting. At this point, the median nerve is located very superficially. OBJECTIVES: To investigate the distance between the needle tip and the median nerve during acupuncture at P6, we conducted a prospective observational ultrasound (US) imaging study. We tested the hypothesis that de qi (a sensation that is typical of acupuncture needling) is evoked when the needle comes into contact with the epineural tissue and thereby prevents nerve penetration. SETTINGS/LOCATION: The outpatient pain clinic of the Medical University of Vienna, Austria. SUBJECTS: Fifty (50) patients receiving acupuncture treatment including P6 bilaterally. INTERVENTIONS: Patients were examined at both forearms using US (a 10-MHz linear transducer) after insertion of the needle at P6. OUTCOME MEASURES: The distance between the needle tip and the median nerve, the number of nerve contacts and nerve penetrations, as well as the number of successfully elicited de qi sensations were recorded. RESULTS: Complete data could be obtained from 97 cases. The mean distance from the needle tip to the nerve was 1.8 mm (standard deviation 2.2; range 0-11.3). Nerve contacts were recorded in 52 cases, in 14 of which the nerve was penetrated by the needle. De qi was elicited in 85 cases. We found no association between the number of nerve contacts and de qi. The 1-week follow-up showed no complications or neurologic problems. CONCLUSIONS: This is the first investigation demonstrating the relationship between acupuncture needle placement and adjacent neural structures using US technology. The rate of median nerve penetrations by the acupuncture needle at P6 was surprisingly high, but these seemed to carry no risk of neurologic sequelae. De qi at P6 does not depend on median nerve contact, nor does it prevent median nerve penetration.
Resumo:
PURPOSE: To correlate the dimension of the visual field (VF) tested by Goldman kinetic perimetry with the extent of visibility of the highly reflective layer between inner and outer segments of photoreceptors (IOS) seen in optical coherence tomography (OCT) images in patients with retinitis pigmentosa (RP). METHODS: In a retrospectively designed cross-sectional study, 18 eyes of 18 patients with RP were examined with OCT and Goldmann perimetry using test target I4e and compared with 18 eyes of 18 control subjects. A-scans of raw scan data of Stratus OCT images (Carl Zeiss Meditec, AG, Oberkochen, Germany) were quantitatively analyzed for the presence of the signal generated by the highly reflective layer between the IOS in OCT images. Starting in the fovea, the distance to which this signal was detectable was measured. Visual fields were analyzed by measuring the distance from the center point to isopter I4e. OCT and visual field data were analyzed in a clockwise fashion every 30 degrees , and corresponding measures were correlated. RESULTS: In corresponding alignments, the distance from the center point to isopter I4e and the distance to which the highly reflective signal from the IOS can be detected correlate significantly (r = 0.75, P < 0.0001). The greater the distance in VF, the greater the distance measured in OCT. CONCLUSIONS: The authors hypothesize that the retinal structure from which the highly reflective layer between the IOS emanates is of critical importance for visual and photoreceptor function. Further research is warranted to determine whether this may be useful as an objective marker of progression of retinal degeneration in patients with RP.
Resumo:
BACKGROUND: To determine the value of the distance doubling visual acuity test in the diagnosis of nonorganic visual loss in a comparative observational case series. METHODS: Twenty-one consecutive patients with nonorganic visual acuity loss and 21 subjects with organic visual loss as controls were included. Best corrected visual acuity was tested at the normal distance of 5 meters using Landolt Cs. The patient was then repositioned and best corrected visual acuity was tested with the previous optotypes at double the distance via a mirror. RESULTS: Nonorganic visual acuity loss was identified in 21 of 21 patients. Sensitivity and specificity of distance-doubling visual acuity test in functional visual loss were found to be 100% (CI; 83%-100%) and 100% (CI; 82%-100%), respectively. CONCLUSION: Distance doubling visual acuity test is widely used to detect nonorganic visual loss. Our results show that this test has a high specificity and sensitivity to detect nonorganic visual impairment.
Resumo:
In general, vascular contributions to the in vivo magnetic resonance (MR) brain spectrum are too small to be relevant. In cerebral uptake studies, however, vascular contributions may constitute a major confounder. MR visibility of vascular Phe was investigated by recording localized spectra from fully oxygenated and well-mixed whole blood. Blood Phe levels determined by MR spectroscopy (MRS) and ion-exchange chromatography showed excellent correlation. In addition, effects of blood flow were shown to have a small effect on signal amplitude with the MRS methodology used. Hence, blood Phe is almost completely MR visible at 1.5 T, even though it is severely broadened at higher fields. Without appropriate correction, cerebral Phe influx in studies of brain Phe uptake in phenylketonuria patients or healthy subjects would appear to be faster and lead to higher levels. Similar effects are envisaged for studies of ethanol or glucose uptake across the blood-brain barrier.