20 resultados para Viability chart for the highway implantation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Accurate projection of implanted subdural electrode contacts in presurgical evaluation of pharmacoresistant epilepsy cases by invasive EEG is highly relevant. Linear fusion of CT and MRI images may display the contacts in the wrong position due to brain shift effects. OBJECTIVE: A retrospective study in five patients with pharmacoresistant epilepsy was performed to evaluate whether an elastic image fusion algorithm can provide a more accurate projection of the electrode contacts on the pre-implantation MRI as compared to linear fusion. METHODS: An automated elastic image fusion algorithm (AEF), a guided elastic image fusion algorithm (GEF), and a standard linear fusion algorithm (LF) were used on preoperative MRI and post-implantation CT scans. Vertical correction of virtual contact positions, total virtual contact shift, corrections of midline shift and brain shifts due to pneumencephalus were measured. RESULTS: Both AEF and GEF worked well with all 5 cases. An average midline shift of 1.7mm (SD 1.25) was corrected to 0.4mm (SD 0.8) after AEF and to 0.0mm (SD 0) after GEF. Median virtual distances between contacts and cortical surface were corrected by a significant amount, from 2.3mm after LF to 0.0mm after AEF and GEF (p<.001). Mean total relative corrections of 3.1 mm (SD 1.85) after AEF and 3.0mm (SD 1.77) after GEF were achieved. The tested version of GEF did not achieve a satisfying virtual correction of pneumencephalus. CONCLUSION: The technique provided a clear improvement in fusion of pre- and post-implantation scans, although the accuracy is difficult to evaluate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The Journey bicruciate substituting (BCS) total knee replacement (TKR) is intended to improve knee kinematics by more closely approximating the surfaces of a normal knee. The purpose of this analysis was to address the safety of Journey BCS knees by studying early complication and revision rates in a consecutive case series. METHODS Between December 2006 and May 2011, a single surgeon implanted 226 Journey BCS total knee prostheses in 191 patients (124 women, 67 men) who were eligible for study. Mean age at surgery was 68 years (41-85 years).Outcome measures were early complications and minor and major revision rates. All complications were considered, irrespective of whether conservative treatment or revision was required. RESULTS The average implantation time was 3.5 years (range 1.3-5.8 years). Thirty-three complications (14.6% of 226 knees) required minor or major revision surgery in 25 patients. The remaining eight patients were treated conservatively. Sixteen minor revisions were performed in 12 patients. Thirteen major revisions were required in 13 patients, which results in a rate of 1.65 major revisions per 100 component years. The linear trend of the early complication rate by treatment year was not significant (p = .22).Multivariate logistic regression showed no significant predictors for the occurrence of a complication or for revision surgery. A tendency towards higher complication rates was observed in female patients, although it was not significant (p = .066). CONCLUSIONS The complication and revision rates of the Journey BCS knee implant are high in comparison with those reported for other established total knee systems. Caution is advised when using this implant, particularly for less experienced knee surgeons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Für Patienten an der Hämodialyse ist nach Versagen der klassischen arterio-venösen Fisteln oder Shunts ein direkter Gefässzugang mittels Katheter lebensnotwendig. Permanente zentralvenöse Katheter penetrieren die Hals- und Thoraxweichteile und die Haut ohne rigide Befestigung. Die Infektionsrate ist hoch und führt oft zur Explantation. Knochenverankerte Hörgeräte sind zur Behandlung bei Schalleitungsschwerhörigkeit etabliert. Das Implantat sitzt fest im Felsenbein und der Aufsatz penetriert die Haut. Schwere Infektionen, die eine Explantation nötig machen, sind sehr selten. Wir nehmen an, dass einer der Hauptgründe für die tiefe Komplikationsrate die starke Befestigung des Implantats am Knochen ist, wodurch die Hautbewegungen relativ zum Knochen minimiert werden. Basierend auf den Erfahrungen mit implantierten Hörsystemen haben wir einen perkutanen knochenverankerten Hämodialysezugang im Bereich des Felsenbeins als vorteilhafte Alternative zum herkömmlichen zentralvenösen Katheterzugang entwickelt. Dabei wurde die Felsenbeinanatomie und Knochendicke zur Lokalisierung des idealen Implantationsortes untersucht; die Schraubenstabilität im Knochen getestet; ein Titanimplantat inklusive Ventile und Katheter, sowie chirurgische Instrumente zur sicheren Implantation entwickelt. Der knochenverankerte Hämodialysezugang wurde auf Flussrate, Dichtigkeit und Reinigung getestet; die Platzierung des Katheters mittels Seldingertechnik in die V. jugularis interna über eine Halsinzision festgelegt. Die Resultate unserer Arbeit zeigen die technische Machbarkeit eines im Felsenbein verankerten neuartigen Hämodialysezuganges und bilden die Grundlage einer inzwischen bewilligten klinischen Pilotstudie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The induction of activity of the enzyme nitrate reductase (NR, EC 1.6.6.1, 1.6.6.2) in needles of Norway spruce (Picea abies[L.] Karst.) by nitrogen dioxide (NO2) was studied under laboratory and field conditions. In fumigation chambers an increase in nitrate reductase activity (NRA) was detected 4 h after the start of the NO2 treatment. During the first 2 days with 100 µg NO2 m−3, NRA reached a constant level and did not change during the following 4 days. At the same level of NO2, NRA was lower in needles from trees grown on NPK-fertilized soil than on non-fertilized soil. After the transfer of spruce trees from fertilized soil to NPK-rich nutrient solution, NRA was transiently increased. This effect was assigned to root injuries causing nitrate transport to the shoot and subsequent induction of NRA. Neither trees on fertilized soil nor trees transferred to NPK-poor nutrient solution had increased NRA unless NO2 was provided. The NO2 gradient in the vicinity of a highway was used to test the long-term effect of elevated levels of NO2 on needle NRA of potted and field-grown spruce trees. Compared with less polluted sites, permanently increased NRAs were detected when NO2 concentrations were above 20 µg m−3. Controls of field measurements some 10 years after the introduction of catalytic converters in cars showed no significant change neither in NO2 levels nor in the decreasing NRA of spruce needles with the distance from the highway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY HYPOTHESIS Using optimized conditions, primary trophoblast cells isolated from human term placenta can develop a confluent monolayer in vitro, which morphologically and functionally resembles the microvilli structure found in vivo. STUDY FINDING We report the successful establishment of a confluent human primary trophoblast monolayer using pre-coated polycarbonate inserts, where the integrity and functionality was validated by cell morphology, biophysical features, cellular marker expression and secretion, and asymmetric glucose transport. WHAT IS KNOWN ALREADY Human trophoblast cells form the initial barrier between maternal and fetal blood to regulate materno-fetal exchange processes. Although the method for isolating pure human cytotrophoblast cells was developed almost 30 years ago, a functional in vitro model with primary trophoblasts forming a confluent monolayer is still lacking. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term cytotrophoblasts were isolated by enzymatic digestion and density gradient separation. The purity of the primary cells was evaluated by flow cytometry using the trophoblast-specific marker cytokeratin 7, and vimentin as an indicator for potentially contaminating cells. We screened different coating matrices for high cell viability to optimize the growth conditions for primary trophoblasts on polycarbonate inserts. During culture, cell confluency and polarity were monitored daily by determining transepithelial electrical resistance (TEER) and permeability properties of florescent dyes. The time course of syncytia-related gene expression and hCG secretion during syncytialization were assessed by quantitative RT-PCR and enzyme-linked immunosorbent assay, respectively. The morphology of cultured trophoblasts after 5 days was determined by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally, glucose transport studies were performed on the polarized trophoblasts in the same system. MAIN RESULTS AND THE ROLE OF CHANCE During 5-day culture, the highly pure trophoblasts were cultured on inserts coated with reconstituted basement membrane matrix . They exhibited a confluent polarized monolayer, with a modest TEER and a size-dependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ∼400-70 000 Da). The syncytialization progress was characterized by gradually increasing mRNA levels of fusogen genes and elevating hCG secretion. SEM analyses confirmed a confluent trophoblast layer with numerous microvilli, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein 1 (ZO-1) and the membrane proteins ATP-binding cassette transporter A1 (ABCA1) and glucose transporter 1 (GLUT1). Applying this model to study the bidirectional transport of a non-metabolizable glucose derivative indicated a carrier-mediated placental glucose transport mechanism with asymmetric kinetics. LIMITATIONS, REASONS FOR CAUTION The current study is only focused on primary trophoblast cells isolated from healthy placentas delivered at term. It remains to be evaluated whether this system can be extended to pathological trophoblasts isolated from diverse gestational diseases. WIDER IMPLICATIONS OF THE FINDINGS These findings confirmed the physiological properties of the newly developed human trophoblast barrier, which can be applied to study the exchange of endobiotics and xenobiotics between the maternal and fetal compartment, as well as intracellular metabolism, paracellular contributions and regulatory mechanisms influencing the vectorial transport of molecules. LARGE-SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by the Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland, and the Swiss National Science Foundation (grant no. 310030_149958, C.A.). All authors declare that their participation in the study did not involve factual or potential conflicts of interests.