17 resultados para Vector Space IR, Search Engines, Document Clustering, Document
Resumo:
OBJECTIVES The paper's aim is to review dentin hypersensitivity (DHS), discussing pain mechanisms and aetiology. MATERIALS AND METHODS Literature was reviewed using search engines with MESH terms, DH pain mechanisms and aetiology (including abrasion, erosion and periodontal disease). RESULTS The many hypotheses proposed for DHS attest to our lack of knowledge in understanding neurophysiologic mechanisms, the most widely accepted being the hydrodynamic theory. Dentin tubules must be patent from the oral environment to the pulp. Dentin exposure, usually at the cervical margin, is due to a variety of processes involving gingival recession or loss of enamel, predisposing factors being periodontal disease and treatment, limited alveolar bone, thin biotype, erosion and abrasion. CONCLUSIONS The current pain mechanism of DHS is thought to be the hydrodynamic theory. The initiation and progression of DHS are influenced by characteristics of the teeth and periodontium as well as the oral environment and external influences. Risk factors are numerous often acting synergistically and always influenced by individual susceptibility. CLINICAL RELEVANCE Whilst the pain mechanism of DHS is not well understood, clinicians need to be mindful of the aetiology and risk factors in order to manage patients' pain and expectations and prevent further dentin exposure with subsequent sensitivity.
Resumo:
This package includes various Mata functions. kern(): various kernel functions; kint(): kernel integral functions; kdel0(): canonical bandwidth of kernel; quantile(): quantile function; median(): median; iqrange(): inter-quartile range; ecdf(): cumulative distribution function; relrank(): grade transformation; ranks(): ranks/cumulative frequencies; freq(): compute frequency counts; histogram(): produce histogram data; mgof(): multinomial goodness-of-fit tests; collapse(): summary statistics by subgroups; _collapse(): summary statistics by subgroups; gini(): Gini coefficient; sample(): draw random sample; srswr(): SRS with replacement; srswor(): SRS without replacement; upswr(): UPS with replacement; upswor(): UPS without replacement; bs(): bootstrap estimation; bs2(): bootstrap estimation; bs_report(): report bootstrap results; jk(): jackknife estimation; jk_report(): report jackknife results; subset(): obtain subsets, one at a time; composition(): obtain compositions, one by one; ncompositions(): determine number of compositions; partition(): obtain partitions, one at a time; npartitionss(): determine number of partitions; rsubset(): draw random subset; rcomposition(): draw random composition; colvar(): variance, by column; meancolvar(): mean and variance, by column; variance0(): population variance; meanvariance0(): mean and population variance; mse(): mean squared error; colmse(): mean squared error, by column; sse(): sum of squared errors; colsse(): sum of squared errors, by column; benford(): Benford distribution; cauchy(): cumulative Cauchy-Lorentz dist.; cauchyden(): Cauchy-Lorentz density; cauchytail(): reverse cumulative Cauchy-Lorentz; invcauchy(): inverse cumulative Cauchy-Lorentz; rbinomial(): generate binomial random numbers; cebinomial(): cond. expect. of binomial r.v.; root(): Brent's univariate zero finder; nrroot(): Newton-Raphson zero finder; finvert(): univariate function inverter; integrate_sr(): univariate function integration (Simpson's rule); integrate_38(): univariate function integration (Simpson's 3/8 rule); ipolate(): linear interpolation; polint(): polynomial inter-/extrapolation; plot(): Draw twoway plot; _plot(): Draw twoway plot; panels(): identify nested panel structure; _panels(): identify panel sizes; npanels(): identify number of panels; nunique(): count number of distinct values; nuniqrows(): count number of unique rows; isconstant(): whether matrix is constant; nobs(): number of observations; colrunsum(): running sum of each column; linbin(): linear binning; fastlinbin(): fast linear binning; exactbin(): exact binning; makegrid(): equally spaced grid points; cut(): categorize data vector; posof(): find element in vector; which(): positions of nonzero elements; locate(): search an ordered vector; hunt(): consecutive search; cond(): matrix conditional operator; expand(): duplicate single rows/columns; _expand(): duplicate rows/columns in place; repeat(): duplicate contents as a whole; _repeat(): duplicate contents in place; unorder2(): stable version of unorder(); jumble2(): stable version of jumble(); _jumble2(): stable version of _jumble(); pieces(): break string into pieces; npieces(): count number of pieces; _npieces(): count number of pieces; invtokens(): reverse of tokens(); realofstr(): convert string into real; strexpand(): expand string argument; matlist(): display a (real) matrix; insheet(): read spreadsheet file; infile(): read free-format file; outsheet(): write spreadsheet file; callf(): pass optional args to function; callf_setup(): setup for mm_callf().