40 resultados para Vascular Smooth-muscle
Resumo:
RATIONALE: Structural alterations to airway smooth muscle (ASM) are a feature of asthma and cystic fibrosis (CF) in adults. OBJECTIVES: We investigated whether increase in ASM mass is already present in children with chronic inflammatory lung disease. METHODS: Fiberoptic bronchoscopy was performed in 78 children (median age [IQR], 11.3 [8.5-13.8] yr): 24 with asthma, 27 with CF, 16 with non-CF bronchiectasis (BX), and 11 control children without lower respiratory tract disease. Endobronchial biopsy ASM content and myocyte number and size were quantified using stereology. MEASUREMENTS AND MAIN RESULTS: The median (IQR) volume fraction of subepithelial tissue occupied by ASM was increased in the children with asthma (0.27 [0.12-0.49]; P < 0.0001), CF (0.12 [0.06-0.21]; P < 0.01), and BX (0.16 [0.04-0.21]; P < 0.01) compared with control subjects (0.04 [0.02-0.05]). ASM content was related to bronchodilator responsiveness in the asthmatic group (r = 0.66, P < 0.01). Median (IQR) myocyte number (cells per mm(2) of reticular basement membrane) was 8,204 (5,270-11,749; P < 0.05) in children with asthma, 4,504 (2,838-8,962; not significant) in children with CF, 4,971 (3,476-10,057; not significant) in children with BX, and 1,944 (1,596-6,318) in control subjects. Mean (SD) myocyte size (mum(3)) was 3,344 (801; P < 0.01) in children with asthma, 3,264 (809; P < 0.01) in children with CF, 3,177 (873; P < 0.05) in children with BX, and 1,927 (386) in control subjects. In all disease groups, the volume fraction of ASM in subepithelial tissue was related to myocyte number (asthma: r = 0.84, P < 0.001; CF: r = 0.81, P < 0.01; BX: r = 0.95, P < 0.001), but not to myocyte size. CONCLUSIONS: Increases in ASM (both number and size) occur in children with chronic inflammatory lung diseases that include CF, asthma, and BX.
Resumo:
In horses, gastrointestinal (GI) disorders occur frequently and cause a considerable demand for efficient medication. 5-Hydroxytryptamine receptors (5-HT) have been reported to be involved in GI tract motility and thus, are potential targets for treating functional bowel disorders. Our studies extend current knowledge on the 5-HT(7) receptor in equine duodenum, ileum and pelvic flexure by studying its expression throughout the intestine and its role in modulating contractility in vitro by immunofluorescence and organ bath experiments, respectively. 5-HT(7) immunoreactivity was demonstrated in both smooth muscle layers, particularly in the circular one, and within the myenteric plexus. Interstitial cells of Cajal (ICC), identified by c-Kit labeling, show a staining pattern similar to that of 5-HT(7) immunoreactivity. The selective 5-HT(7) receptor antagonist SB-269970 increased the amplitude of contractions in spontaneous contracting specimens of the ileum and in electrical field-stimulated specimens of the pelvic flexure concentration-dependently. Our in vitro experiments suggest an involvement of the 5-HT(7) receptor subtype in contractility of equine intestine. While the 5-HT(7) receptor has been established to be constitutively active and inhibits smooth muscle contractility, our experiments demonstrate an increase in contractility by the 5-HT(7) receptor ligand SB-269970, suggesting it exerting inverse agonist properties.
Resumo:
Integrins are matrix receptors that regulate cell-matrix interactions during development and in adult tissue. In the adult kidney, the alpha8 chain is specifically expressed in glomerular mesangial cells and vascular smooth muscle cells. alpha8-deficient (alpha8-/-) mice demonstrate reductions in renal mass, which can range from complete renal agenesis to the development of kidneys that are only slightly smaller than wild-type kidneys. No histologic abnormalities of these kidneys have been described. However, considering the prominent expression of alpha8 in glomeruli and renal vessels, it seemed unlikely that the kidneys of alpha8-/- mice would be completely normal. Therefore, the renal phenotype of adult alpha8-/- mice was investigated, for assessment of more subtle morphologic alterations in kidney tissue. alpha8-/- mice displayed a significant reduction in nephron number and an increase in glomerular volume, compared with wild-type control animals. Albuminuria was not different in wild-type and alpha8-/- mice. Quantitative morphologic analyses revealed that the glomeruli of alpha8-/- mice were hypercellular, with an increased number of mesangial cells, compared with wild-type mice. Mesangial matrix deposition (as demonstrated for collagen IV and the alpha8 ligand fibronectin) was expanded in alpha8-/- mice, compared with wild-type mice. Collagens I and III, which are not normally present in glomeruli, were detected in the glomeruli of alpha8-/- mice. Staining for other glomerular integrins demonstrated an increased abundance of the collagen receptor alpha2 integrin in alpha8-/- mice. The glomerular capillary length density was significantly greater in alpha8-/- mice than in wild-type mice. Cortical arterial vessel walls were not altered in alpha8-/- mice, but the capillaries of the peritubular network were widened. Despite the strong mesangial and vascular expression of alpha8, glomerular and renal vascular alterations in alpha8-/- mice were relatively mild. Only aged alpha8-/- mice demonstrated increased glomerular capillary widening, compared with control animals. The results suggest that the lack of alpha8 can be largely compensated for, at least in younger alpha8-/- mice. It is not yet clear whether the occurrence of collagens that are not normally present in glomeruli and the increased abundance of the collagen receptor alpha2 contribute to maintaining the glomerular structure in alpha8-/- mice. The compensatory mechanisms involved will be the subject of future research.
Resumo:
MicroRNA miR-199a-5p impairs tight junction formation leading to increased urothelial permeability in bladder pain syndrome. Now using transcriptome analysis in urothelial TEU-2 cells we implicate it in the regulation of cell cycle, cytoskeleton remodeling, TGF and Wnt signaling pathways. MiR-199a-5p is highly expressed in the smooth muscle layer of the bladder and we altered its levels in bladder smooth muscle cells (SMC) to validate the pathway analysis. Inhibition of miR-199a-5p with antimiR increased SMC proliferation, reduced cell size and up-regulated miR-199a-5p targets, including Wnt2. Overexpression of Wnt2 protein or treating SMCs with recombinant Wnt2 closely mimicked the miR-199a-5p inhibition, whereas down-regulation of Wnt2 in antimiR-expressing SMCs with shRNA restored cell phenotype and proliferation rates. Overexpression of miR-199a-5p in the bladder SMCs significantly increased cell size and up-regulated SM22, SM alpha-actin and SM myosin heavy chain mRNA and protein levels. These changes, as well as increased expression of ACTG2, TGFB1I1, and CDKN1A were mediated by up-regulation of smooth muscle-specific transcriptional activator myocardin at mRNA and protein levels. Myocardin-related transcription factor (MRTF-A) downstream targets Id3 and MYL9 were also induced. Up-regulation of myocardin was accompanied by down-regulation of Wnt-dependent inhibitory Kruppel-like transcription factor 4 (KLF4) in miR-199a-5p overexpressing cells. In contrast, KLF4 was induced in antimiR-expressing cells following the activation of Wnt2 signaling, leading to repression of myocardin-dependent genes. MiR-199a-5p plays a critical role in the Wnt2-mediated regulation of proliferative and differentiation processes in the smooth muscle and may behave as a key modulator of smooth muscle hypertrophy, relevant for organ remodeling.
Resumo:
The decreased incidence of cardiovascular disease in premenopausal women has been attributed, at least partially, to protective effects of estrogens. However, premenopausal women with diabetes mellitus are no longer selectively protected. High-glucose (HG) conditions have previously been shown to abolish the antimitogenic effects of 17β-estradiol (E(2)) in vascular smooth muscle cells (VSMCs).
Resumo:
Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.
Resumo:
The regulation of blood pressure is complex with several organs being involved. Intracellular calcium plays a crucial role in the regulation of cardiovascular functions: An increased influx of calcium into the vascular smooth muscle cells leads to an augmental muscular tone and therefore to an increased vascular resistance and rise in blood pressure. Parathormone plays a permissive role since it regulates the calcium-influx into the cells and thus increases the vasoconstrictive effect. There is a positive correlation between parathormone and blood pressure, present in primary as well as secondary hyperparathyroidism. Moreover, patients with essential hypertension have high parathormone levels already before hypertension is diagnosed. A calcium-rich diet (> 1000 mg calcium daily) slightly decreases blood pressure. This positive effect is due to parathormone suppression with a subsequently decreased calcium content in the vascular smooth muscle cells. A calcium-rich diet inhibits lipogenesis in the fat tissue; thus additionally improving the cardiovascular risk profile.
Resumo:
Although rare, stent thrombosis remains a severe complication after stent implantation owing to its high morbidity and mortality. Since the introduction of drug-eluting stents (DES), most interventional centers have noted stent thrombosis up to 3 years after implantation, a complication rarely seen with bare-metal stents. Some data from large registries and meta-analyses of randomized trials indicate a higher risk for DES thrombosis, whereas others suggest an absence of such a risk. Several factors are associated with an increased risk of stent thrombosis, including the procedure itself (stent malapposition and/or underexpansion, number of implanted stents, stent length, persistent slow coronary blood flow, and dissections), patient and lesion characteristics, stent design, and premature cessation of antiplatelet drugs. Drugs released from DES exert distinct biological effects, such as activation of signal transduction pathways and inhibition of cell proliferation. As a result, although primarily aimed at preventing vascular smooth muscle cell proliferation and migration (ie, key factors in the development of restenosis), they also impair reendothelialization, which leads to delayed arterial healing, and induce tissue factor expression, which results in a prothrombogenic environment. In the same way, polymers used to load these drugs have been associated with DES thrombosis. Finally, DES impair endothelial function of the coronary artery distal to the stent, which potentially promotes the risk of ischemia and coronary occlusion. Although several reports raise the possibility of a substantially higher risk of stent thrombosis in DES, evidence remains inconclusive; as a consequence, both large-scale and long-term clinical trials, as well as further mechanistic studies, are needed. The present review focuses on the pathophysiological mechanisms and pathological findings of stent thrombosis in DES.
Resumo:
BACKGROUND: Cryopreserved human blood vessels are important tools in reconstructive surgery. However, patency of frozen/thawed conduits depends largely on the freezing/thawing procedures employed. METHODS: Changes in tone were recorded on rings from human saphenous vein (SV) and used to quantify the degree of cryoinjury after different periods of exposure at room temperature to the cryomedium (Krebs-Henseleit solution containing 1.8M dimethyl sulfoxide and 0.1M sucrose) and after different cooling speeds and thawing rates following storage at -196 degrees C. RESULTS: Without freezing, exposure of SV to the cryomedium for up to 240 min did not modify contractile responses to noradrenaline (NA). Pre-freezing exposure to the cryomedium for 10-120 min attenuated significantly post-thaw maximal contractile responses to NA, endothelin-1 (ET-1) and potassium chloride (KCl) by 30-44%. Exposure for 240 min attenuated post-thaw contractile responses to all tested agents markedly by 62-67%. Optimal post-thaw contractile activity was obtained with SV frozen at about -1.2 degrees C/min and thawed slowly at about 15 degrees C/min. In these SV maximal contractile responses to NA, ET-1 and KCl amounted to 66%, 70% and 60% of that produced by unfrozen controls. Following cryostorage of veins for up to 10 years the responsiveness of vascular smooth muscle to NA was well maintained. CONCLUSION: Cryopreservation allows long-term banking of viable human SV with only minor loss in contractility.
Resumo:
In contrast to the current belief that angiotensin II (Ang II) interacts with the sympathetic nervous system only as a circulating hormone, we document here the existence of endogenous Ang II in the neurons of rat and human sympathetic coeliac ganglia and their angiotensinergic innervation with mesenteric resistance blood vessels. Angiotensinogen - and angiotensin converting enzyme-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia, while renin mRNA was untraceable. Cathepsin D, a protease responsible for cleavage beneath other substrates also angiotensinogen to angiotensin I, was successfully detected in rat coeliac ganglia indicating the possibility of existence of alternative pathways. Angiotensinogen mRNA was also detected by in situ hybridization in the cytoplasm of neurons of rat coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia as well as with mesenteric resistance blood vessels. By using confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally with the mesenteric resistance blood vessels.
Resumo:
This study investigated the contribution of estrogen receptors (ERs) alpha and beta for epicardial coronary artery function, vascular NO bioactivity, and superoxide (O(2)(-)) formation. Porcine coronary rings were suspended in organ chambers and precontracted with prostaglandin F(2alpha) to determine direct effects of the selective ER agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (PPT) or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) or the nonselective ER agonist 17beta-estradiol. Indirect effects on contractility to U46619 and relaxation to bradykinin were assessed and effects on NO, nitrite, and O(2)(-) formation were measured in cultured cells. Within 5 minutes, selective ERalpha activation by PPT, but not 17beta-estradiol or the ERbeta agonist DPN, caused rapid, NO-dependent, and endothelium-dependent relaxation (49+/-5%; P<0.001 versus ethanol). PPT also caused sustained endothelium- and NO-independent vasodilation similar to 17beta-estradiol after 60 minutes (72+/-3%; P<0.001 versus ethanol). DPN induced endothelium-dependent NO-independent relaxation via endothelium-dependent hyperpolarization (40+/-4%; P<0.01 versus ethanol). 17beta-Estradiol and PPT, but not DPN, attenuated the responses to U46619 and bradykinin. All of the ER agonists increased NO and nitrite formation in vascular endothelial but not smooth muscle cells and attenuated vascular smooth muscle cell O(2)(-) formation (P<0.001). ERalpha activation had the most potent effects on both nitrite formation and inhibiting O(2)(-) (P<0.05). These data demonstrate novel and differential mechanisms by which ERalpha and ERbeta activation control coronary artery vasoreactivity in males and females and regulate vascular NO and O(2)(-) formation. The findings indicate that coronary vascular effects of sex hormones differ with regard to affinity to ERalpha and ERbeta, which will contribute to beneficial and adverse effects of hormone replacement therapy.
Resumo:
New theories on the regeneration of ischemic vasculature have emerged indicating a pivotal role of adult stem cells. The aim of this study was to investigate homing and hemodynamic effects of circulating bone marrow-derived mesenchymal stem cells (MSCs) in a critically ischemic murine skin flap model. Bone marrow-derived mesenchymal stem cells (Lin(-)CD105(+)) were harvested from GFP(+)-donor mice and transferred to wildtype C57BL/6 mice. Animals receiving GFP(+)-fibroblasts served as a control group. Laser scanning confocal microscopy and intravital fluorescence microscopy were used for morphological analysis, monitoring and quantitative assessment of the stem cell homing and microhemodynamics over two weeks. Immunohistochemical staining was performed for GFP, eNOS, iNOS, VEGF. Tissue viability was analyzed by TUNEL-assay. We were able to visualize perivascular homing of MSCs in vivo. After 4 days, MSCs aligned along the vascular wall without undergoing endothelial or smooth muscle cell differentiation during the observation period. The gradual increase in arterial vascular resistance observed in the control group was abolished after MSC administration (P<0.01). At capillary level, a strong angiogenic response was found from day 7 onwards. Functional capillary density was raised in the MSC group to 197% compared to 132% in the control group (P<0.01). Paracrine expression of VEGF and iNOS, but not eNOS could be shown in the MSC group but not in the controls. In conclusion, we demonstrated that circulating bone marrow-derived MSCs home to perivascular sites in critically ischemic tissue, exhibits paracrine function and augment microhemodynamics. These effects were mediated through arteriogenesis and angiogenesis, which contributed to vascular regeneration.
Resumo:
OBJECTIVE: To investigate the effects of tyrosine-kinase inhibitors of vascular endothelial growth factor (VECF) and platelet-derived growth factor (PDCF)-receptors on non-malignant tissue and whether they depend upon the stage of vascular maturation. MATERIALS AND METHODS: PTK787/ZK222584 and CGP53716 (VEGF- and PDGF-receptor inhibitor respectively), both alone and combined, were applied on chicken chorioallantoic membrane (CAM). RESULTS: On embryonic day of CAM development (E)8, only immature microvessels, which lack coverage of pericytes, are present: whereas the microvessels on E12 have pericytic coverage. This development was reflected in the expression levels of pericytic markers (alpha-smooth muscle actin, PDGF-receptor beta and desmin), which were found by immunoblotting to progressively increase between E8 and E12. Monotherapy with 2 microg of PTK787/ZK222584 induced significant vasodegeneration on E8, but not on E12. Monotherapy with CGP53716 affected only pericytes. When CGP53716 was applied prior to treatment with 2 microg of PTK787/ZK222584, vasodegeneration occurred also on E12. The combined treatment increased the apoptotic rate. as evidenced by the cDNA levels of caspase-9 and the TUNEL-assay. CONCLUSION: Anti-angiogenic treatment strategies for non-neoplastic disorders should aim to interfere with the maturation stage of the target vessels: monotherapy with VEGF-receptor inhibitor for immature vessels, and combined anti-angiogenic treatment for well developed mature vasculature.
Resumo:
Relaying a signal across the plasma membrane requires functional connections between the partner molecules. Membrane microdomains or lipid rafts provide an environment in which such specific interactions can take place. The integrity of these sites is often taken for granted when signalling pathways are investigated in cell culture. However, it is well known that smooth muscle and endothelial cells undergo cytoskeletal rearrangements during monolayer culturing. Likewise affected--and with potentially important consequences for signalling events--is the organization of the plasma membrane. The expression levels of three raft markers were massively upregulated, and raft-associated 5'-nucleotidase activity increased in conventional monolayer cultures as compared with a spheroidal coculture model, shown to promote the differentiation of endothelial cells. Our data point to a shift of raft components in monolayer cultures and demonstrate potential advantages of the spheroid coculture system for investigation of raft-mediated signalling events in endothelial cells.
Resumo:
The aim of our study was to investigate the phenomenon of intussusceptive angiogenesis with a focus on its molecular regulation by vascular endothelial growth factor receptor (VEGFR)/platelet-derived growth factor receptor β (PDGFRβ) pathways and biological significance for glomerular recovery after acute injury. Glomerular healing by intussusception was examined in a particular setting of Thy1.1 nephritis, where the lysis of mesangial cells results in an initial collapse and successive rebuilding of glomerular capillary structure. Restoration of capillary structure after induction of Thy1.1 nephritis occurred by intussusceptive angiogenesis resulting in i) rapid expansion of the capillary plexus with reinstatement of the glomerular filtration surface and ii) restoration of the archetypical glomerular vascular pattern. Glomerular capillaries of nephritic rats after combined VEGFR2 and PDGFRβ inhibition by PTK787/ZK222584 (PTK/ZK) were tortuous and irregular. However, the onset of intussusceptive angiogenesis was influenced only after long-term PTK/ZK treatment, providing an important insight into differential molecular regulation between sprouting and intussusceptive angiogenesis. PTK/ZK treatment abolished α-smooth muscle actin and tensin expression by injured mesangial cells, impaired glomerular filtration of microspheres, and led to the reduction of glomerular volume and the presence of multiple hemorrhages detectable in the tubular system. Collectively, treatment of nephritic patients with PTK/ZK compound is not recommended.