81 resultados para Turn signals.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Mitochondrial reactive oxygen species (ROS) have been demonstrated to play an important role as signaling and regulating molecules in human adipocytes. In order to evaluate the differential modulating roles of antioxidants, we treated human adipocytes differentiated from human bone marrow-derived mesenchymal stem cells with MitoQ, resveratrol and curcumin. The effects on ROS, viability, mitochondrial respiration and intracellular ATP levels were examined. MitoQ lowered both oxidizing and reducing ROS. Resveratrol decreased reducing and curcumin oxidizing radicals only. All three substances slightly decreased state III respiration immediately after addition. After 24 h of treatment, MitoQ inhibited both basal and uncoupled oxygen consumption, whereas curcumin and resveratrol had no effect. Intracellular ATP levels were not altered. This demonstrates that MitoQ, resveratrol and curcumin exert potent modulating effects on ROS signaling in human adipocyte with marginal effects on metabolic parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the growing health problem associated with obesity, clarification of the regulation of energy homeostasis is important. Peripheral signals, such as ghrelin and leptin, have been shown to influence energy homeostasis. Nutrients and physical exercise, in turn, influence hormone levels. Data on the hormonal response to physical exercise (standardized negative energy balance) after high-fat (HF) or low-fat (LF) diet with identical carbohydrate intake are currently not available. The aim of the study was to investigate whether a short-term dietary intervention with HF and LF affects ghrelin and leptin levels and their modulators, GH, insulin and cortisol, before and during aerobic exercise. Eleven healthy, endurance-trained male athletes (W(max) 365 +/- 29 W) were investigated twice in a randomized crossover design following two types of diet: 1. LF - 0.5 g fat/kg body weight (BW) per day for 2.5 days; 2. HF - 0.5 g fat/kg BW per day for 1 day followed by 3.5 g fat/kg BW per day for 1.5 days. After a standardized carbohydrate snack in the morning, metabolites and hormones (GH, ghrelin, leptin, insulin and cortisol) were measured before and at regular intervals throughout a 3-h aerobic exercise test on a cycloergometer at 50% of W(max). Diet did not significantly affect GH and cortisol concentrations during exercise but resulted in a significant increase in ghrelin and decrease in leptin concentrations after LF compared with HF diet (area under the curve (AUC) ghrelin LF vs HF: P < 0.03; AUC leptin LF vs HF: P < 0.02, Wilcoxon rank test). These data suggest that acute negative energy balance induced by exercise elicits a hormonal response with opposite changes of ghrelin and leptin. In addition, the hormonal response is modulated by the preceding intake of fat.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Estimation of respiratory deadspace is often based on the CO2 expirogram, however presence of the CO2 sensor increases equipment deadspace, which in turn influences breathing pattern and calculation of lung volume. In addition, it is necessary to correct for the delay between the sensor and flow signals. We propose a new method for estimation of effective deadspace using the molar mass (MM) signal from an ultrasonic flowmeter device, which does not require delay correction. We hypothesize that this estimation is correlated with that calculated from the CO2 signal using the Fowler method. METHODS: Breath-by-breath CO2, MM and flow measurements were made in a group of 77 term-born healthy infants. Fowler deadspace (Vd,Fowler) was calculated after correcting for the flow-dependent delay in the CO2 signal. Deadspace estimated from the MM signal (Vd,MM) was defined as the volume passing through the flowhead between start of expiration and the 10% rise point in MM. RESULTS: Correlation (r = 0.456, P < 0.0001) was found between Vd,MM and Vd,Fowler averaged over all measurements, with a mean difference of -1.4% (95% CI -4.1 to 1.3%). Vd,MM ranged from 6.6 to 11.4 ml between subjects, while Vd,Fowler ranged from 5.9 to 12.0 ml. Mean intra-measurement CV over 5-10 breaths was 7.8 +/- 5.6% for Vd,MM and 7.8 +/- 3.7% for Vd,Fowler. Mean intra-subject CV was 6.0 +/- 4.5% for Vd,MM and 8.3 +/- 5.9% for Vd,Fowler. Correcting for the CO2 signal delay resulted in a 12% difference (P = 0.022) in Vd,Fowler. Vd,MM could be obtained more frequently than Vd,Fowler in infants with CLD, with a high variability. CONCLUSIONS: Use of the MM signal provides a feasible estimate of Fowler deadspace without introducing additional equipment deadspace. The simple calculation without need for delay correction makes individual adjustment for deadspace in FRC measurements possible. This is especially important given the relative large range of deadspace seen in this homogeneous group of infants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium influx into the dendritic tufts of layer 5 neocortical pyramidal neurons modifies a number of important cellular mechanisms. It can trigger local synaptic plasticity and switch the firing properties from regular to burst firing. Due to methodological limitations, our knowledge about Ca2+ spikes in the dendritic tuft stems mostly from in vitro experiments. However, it has been speculated that regenerative Ca2+ events in the distal dendrites correlate with distinct behavioral states. Therefore it would be most desirable to be able to record these Ca2+ events in vivo, preferably in the behaving animal. Here, we present a novel approach for recording Ca2+ signals in the dendrites of populations of layer 5 pyramidal neurons in vivo, which ensures that all recorded fluorescence changes are due to intracellular Ca2+ signals in the apical dendrites. The method has two main features: 1) bolus loading of layer 5 with a membrane-permeant Ca2+ dye resulting in specific loading of pyramidal cell dendrites in the upper layers and 2) a fiberoptic cable attached to a gradient index lens and a prism reflecting light horizontally at 90 degrees to the angle of the apical dendrites. We demonstrate that the in vivo signal-to-noise ratio recorded with this relatively inexpensive and easy-to-implement fiberoptic-based device is comparable to conventional camera-based imaging systems used in vitro. In addition, the device is flexible and lightweight and can be used for recording Ca2+ signals in the distal dendritic tuft of freely behaving animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary visual cortex (V1) is pre-wired to facilitate the extraction of behaviorally important visual features. Collinear edge detectors in V1, for instance, mutually enhance each other to improve the perception of lines against a noisy background. The same pre-wiring that facilitates line extraction, however, is detrimental when subjects have to discriminate the brightness of different line segments. How is it possible to improve in one task by unsupervised practicing, without getting worse in the other task? The classical view of perceptual learning is that practicing modulates the feedforward input stream through synaptic modifications onto or within V1. However, any rewiring of V1 would deteriorate other perceptual abilities different from the trained one. We propose a general neuronal model showing that perceptual learning can modulate top-down input to V1 in a task-specific way while feedforward and lateral pathways remain intact. Consistent with biological data, the model explains how context-dependent brightness discrimination is improved by a top-down recruitment of recurrent inhibition and a top-down induced increase of the neuronal gain within V1. Both the top-down modulation of inhibition and of neuronal gain are suggested to be universal features of cortical microcircuits which enable perceptual learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological homochirality on earth and its tremendous consequences for pharmaceutical science and technology has led to an ever increasing interest in the selective production, the resolution and the detection of enantiomers of a chiral compound. Chiral surfaces and interfaces that can distinguish between enantiomers play a key role in this respect as enantioselective catalysts as well as for separation purposes. Despite the impressive progress in these areas in the last decade, molecular-level understanding of the interactions that are at the origin of enantiodiscrimination are lagging behind due to the lack of powerful experimental techniques to spot these interactions selectively with high sensitivity. In this article, techniques based on infrared spectroscopy are highlighted that are able to selectively target the chiral properties of interfaces. In particular, these methods are the combination of Attenuated Total Reflection InfraRed (ATR-IR) with Modulation Excitation Spectroscopy (MES) to probe enantiodiscriminating interactions at chiral solid-liquid interfaces and Vibrational Circular Dichroism (VCD), which is used to probe the structure of chirally-modified metal nanoparticles. The former technique aims at suppressing signals arising from non-selective interactions, which may completely hide the signals of interest due to enantiodiscriminating interactions. Recently, this method was successfully applied to investigate enantiodiscrimination at self-assembled monolayers of chiral thiols on gold surfaces. The nanometer size analogues of the latter--gold nanoparticles protected by a monolayer of a chiral thiol--are amenable to VCD spectroscopy. It is shown that this technique yields detailed structural information on the adsorption mode and the conformation of the adsorbed thiol. This may also turn out to be useful to clarify how chirality can be bestowed onto the metal core itself and the nature of the chirality of the latter, which is manifested in the metal-based circular dichroism activity of these nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroencephalograms (EEG) are often contaminated with high amplitude artifacts limiting the usability of data. Methods that reduce these artifacts are often restricted to certain types of artifacts, require manual interaction or large training data sets. Within this paper we introduce a novel method, which is able to eliminate many different types of artifacts without manual intervention. The algorithm first decomposes the signal into different sub-band signals in order to isolate different types of artifacts into specific frequency bands. After signal decomposition with principal component analysis (PCA) an adaptive threshold is applied to eliminate components with high variance corresponding to the dominant artifact activity. Our results show that the algorithm is able to significantly reduce artifacts while preserving the EEG activity. Parameters for the algorithm do not have to be identified for every patient individually making the method a good candidate for preprocessing in automatic seizure detection and prediction algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic acoustic emission (UAE) in trees is often related to collapsing water columns in the flow path as a result of tensions that are too strong (cavitation). However, in a decibel (dB) range below that associated with cavitation, a close relationship was found between UAE intensities and stem radius changes. • UAE was continuously recorded on the stems of mature field-grown trees of Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens) at a dry inner-Alpine site in Switzerland over two seasons. The averaged 20-Hz records were related to microclimatic conditions in air and soil, sap-flow rates and stem-radius fluctuations de-trended for growth (ΔW). • Within a low-dB range (27 ± 1 dB), UAE regularly increased and decreased in a diurnal rhythm in parallel with ΔW on cloudy days and at night. These low-dB emissions were interrupted by UAE abruptly switching between the low-dB range and a high-dB range (36 ± 1 dB) on clear, sunny days, corresponding to the widely supported interpretation of UAE as sound from cavitations. • It is hypothesized that the low-dB signals in drought-stressed trees are caused by respiration and/or cambial growth as these physiological activities are tissue water-content dependent and have been shown to produce courses of CO2 efflux similar to our courses of ΔW and low-dB UAE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor-beta2 (TGF-beta2) stimulates the expression of pro-fibrotic connective tissue growth factor (CTGF) during the course of renal disease. Because sphingosine kinase-1 (SK-1) activity is also upregulated by TGF-beta, we studied its effect on CTGF expression and on the development of renal fibrosis. When TGF-beta2 was added to an immortalized human podocyte cell line we found that it activated the promoter of SK-1, resulting in upregulation of its mRNA and protein expression. Further, depletion of SK-1 by small interfering RNA or its pharmacological inhibition led to accelerated CTGF expression in the podocytes. Over-expression of SK-1 reduced CTGF induction, an effect mediated by intracellular sphingosine-1-phosphate. In vivo, SK-1 expression was also increased in the podocytes of kidney sections of patients with diabetic nephropathy when compared to normal sections of kidney obtained from patients with renal cancer. Similarly, in a mouse model of streptozotocin-induced diabetic nephropathy, SK-1 and CTGF were upregulated in podocytes. In SK-1 deficient mice, exacerbation of disease was detected by increased albuminuria and CTGF expression when compared to wild-type mice. Thus, SK-1 activity has a protective role in the fibrotic process and its deletion or inhibition aggravates fibrotic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.