20 resultados para Transition state
Resumo:
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.
Resumo:
A search for excited states of the B ± c meson is performed using 4.9 fb −1 of 7 TeV and 19.2 fb −1 of 8 TeV pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decay B ± c →J/ψπ ± . The state appears in the m(B ± c π + π − )−m(B ± c )−2m(π ± ) mass difference distribution with a significance of 5.2 standard deviations. The mass of the observed state is 6842±4±5 MeV , where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations for the second S -wave state of the B ± c meson, B ± c (2S) .
Resumo:
The amino-keto tautomer of supersonic jet-cooled cytosine undergoes intersystem crossing (ISC) from the v = 0 and low-lying vibronic levels of its S1(¹ππ*) state. We investigate these ISC rates experimentally and theoretically as a function of S1 state vibrational excess energy Eexc. The S1 vibronic levels are pumped with a ~5 ns UV laser, the S1 and triplet state ion signals are separated by prompt or delayed ionization with a second UV laser pulse. After correcting the raw ISC yields for the relative S1 and T1ionization cross sections, we obtain energy dependent ISC quantum yields Q corr ISC =1% –5%. These are combined with previously measured vibronic state-specific decay rates, giving ISC rates kISC = 0.4–1.5 ⋅ 10⁹ s⁻¹, the corresponding S1⇝S0internal conversion (IC) rates are 30–100 times larger. Theoretical ISC rates are computed using SCS-CC2 methods, which predict rapid ISC from the S1; v = 0 state with kISC = 3 ⋅ 10⁹ s⁻¹ to the T1(³ππ*) triplet state. The surprisingly high rate of this El Sayed-forbidden transition is caused by a substantial admixture of ¹nOπ* character into the S1(¹ππ*) wave function at its non-planar minimum geometry. The combination of experiment and theory implies that (1) below Eexc = 550 cm⁻¹ in the S1 state, S1⇝S0internal conversion dominates the nonradiative decay with kIC ≥ 2 ⋅ 10¹⁰ s⁻¹, (2) the calculated S1⇝T1 (¹ππ*⇝³ππ*) ISC rate is in good agreement with experiment, (3) being El-Sayed forbidden, the S1⇝T1 ISC is moderately fast (kISC = 3 ⋅ 10⁹ s⁻¹), and not ultrafast, as claimed by other calculations, and (4) at Eexc ~ 550 cm⁻¹ the IC rate increases by ~50 times, probably by accessing the lowest conical intersection (the C5-twist CI) and thereby effectively switching off the ISC decay channels.
Resumo:
We observe the weak S 0 → S 2 transitions of the T-shaped benzene dimers (Bz)2 and (Bz-d 6)2 about 250 cm−1 and 220 cm−1 above their respective S 0 → S 1 electronic origins using two-color resonant two-photon ionization spectroscopy. Spin-component scaled (SCS) second-order approximate coupled-cluster (CC2) calculations predict that for the tipped T-shaped geometry, the S 0 → S 2 electronic oscillator strength f el (S 2) is ∼10 times smaller than f el (S 1) and the S 2 state lies ∼240 cm−1 above S 1, in excellent agreement with experiment. The S 0 → S 1 (ππ ∗) transition is mainly localized on the “stem” benzene, with a minor stem → cap charge-transfer contribution; the S 0 → S 2 transition is mainly localized on the “cap” benzene. The orbitals, electronic oscillator strengths f el (S 1) and f el (S 2), and transition frequencies depend strongly on the tipping angle ω between the two Bz moieties. The SCS-CC2 calculated S 1 and S 2 excitation energies at different T-shaped, stacked-parallel and parallel-displaced stationary points of the (Bz)2 ground-state surface allow to construct approximate S 1 and S 2 potential energy surfaces and reveal their relation to the “excimer” states at the stacked-parallel geometry. The f el (S 1) and f el (S 2) transition dipole moments at the C 2v -symmetric T-shape, parallel-displaced and stacked-parallel geometries are either zero or ∼10 times smaller than at the tipped T-shaped geometry. This unusual property of the S 0 → S 1 and S 0 → S 2 transition-dipole moment surfaces of (Bz)2 restricts its observation by electronic spectroscopy to the tipped and tilted T-shaped geometries; the other ground-state geometries are impossible or extremely difficult to observe. The S 0 → S 1/S 2 spectra of (Bz)2 are compared to those of imidazole ⋅ (Bz)2, which has a rigid triangular structure with a tilted (Bz)2 subunit. The S 0 → S 1/ S 2 transitions of imidazole-(benzene)2 lie at similar energies as those of (Bz)2, confirming our assignment of the (Bz)2 S 0 → S 2 transition.
Resumo:
Background Several indicators of heightened vulnerability to psychosis and relevant stressors have been identified. However, it has rarely been studied prospectively to what extent these vulnerability factors are in fact more frequently present in individuals with an at-risk mental state for psychosis. Moreover, it remains unknown whether any of these contribute to the prediction of psychosis onset in at-risk mental state individuals. Methods There were 28 healthy controls, 86 first-episode psychosis patients and 127 at-risk mental state individuals recruited within the Basel “Früherkennung von Psychosen” project. Relative frequencies of selected vulnerability factors for psychosis were compared between healthy controls, psychosis patients, those at-risk mental state individuals with subsequent psychosis onset (n = 31) and those without subsequent psychosis onset (n = 55). Survival analyses were applied to determine associations between time to transition to psychosis and vulnerability factors in all 127 at-risk mental state individuals. Results The vulnerability factors/indicators such as “difficulties during school education or vocational training”, “difficulties during employment”, “being single”, “difficulties with intimate relationships” and “being burdened with specific stressful situations” were more commonly found in the at-risk mental state and first-episode psychosis group than in healthy controls. Conclusions At-risk mental state and first-episode psychosis individuals more frequently present with vulnerability factors. Individual vulnerability factors appear, however, not to be predictive for an onset of psychosis.