41 resultados para Trade off
Resumo:
Emergency CT examination is considered to be a trade-off between a short scan time and the acceptance of artifacts. This study evaluates the influence of patient repositioning on artifacts and scan time. Eighty-three consecutive multiple-trauma patients were included in this prospective study. Patients were examined without repositioning (group 1, n=39) or with patient rotation to feet-first with arms raised for scanning the chest and abdomen/pelvis (group 2, n=44). The mean scan time was 21 min in group 1 and 25 min in group 2 (P=0.01). The mean repositioning time in group 2 was 8 min. Significantly, more artifacts were observed in group 1 (with a repeated scan in 7%) than in group 2 (P=0.0001). This novel multiple- trauma CT-scanning protocol with patient repositioning achieves a higher image quality with significantly fewer artifacts than without repositioning but increases scan time slightly.
Resumo:
Watershed services are the benefits people obtain from the flow of water through a watershed. While demand for such services is increasing in most parts of the world, supply is getting more insecure due to human impacts on ecosystems such as climate or land use change. Population and water management authorities therefore require information on the potential availability of watershed services in the future and the trade-offs involved. In this study, the Soil and Water Assessment Tool (SWAT) is used to model watershed service availability for future management and climate change scenarios in the East African Pangani Basin. In order to quantify actual “benefits”, SWAT2005 was slightly modified, calibrated and configured at the required spatial and temporal resolution so that simulated water resources and processes could be characterized based on their valuation by stakeholders and their accessibility. The calibrated model was then used to evaluate three management and three climate scenarios. The results show that by the year 2025, not primarily the physical availability of water, but access to water resources and efficiency of use represent the greatest challenges. Water to cover basic human needs is available at least 95% of time but must be made accessible to the population through investments in distribution infrastructure. Concerning the trade-off between agricultural use and hydropower production, there is virtually no potential for an increase in hydropower even if it is given priority. Agriculture will necessarily expand spatially as a result of population growth, and can even benefit from higher irrigation water availability per area unit, given improved irrigation efficiency and enforced regulation to ensure equitable distribution of available water. The decline in services from natural terrestrial ecosystems (e.g. charcoal, food), due to the expansion of agriculture, increases the vulnerability of residents who depend on such services mostly in times of drought. The expected impacts of climate change may contribute to an increase or decrease in watershed service availability, but are only marginal and much lower than management impacts up to the year 2025.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.
Resumo:
Migration has evolved as a strategy to maximise individual fitness in response to seasonally changing ecological and environmental conditions. However, migration can also incur costs, and quantifying these costs can provide important clues to the ultimate ecological forces that underpin migratory behaviour. A key emerging model to explain migration in many systems posits that migration is driven by seasonal changes to a predation/growth potential (p/g) trade-off that a wide range of animals face. In this study we assess a key assumption of this model for a common cyprinid partial migrant, the roach Rutilus rutilus, which migrates from shallow lakes to streams during winter. By sampling fish from stream and lake habitats in the autumn and spring and measuring their stomach fullness and diet composition, we tested if migrating roach pay a cost of reduced foraging when migrating. Resident fish had fuller stomachs containing more high quality prey items than migrant fish. Hence, we document a feeding cost to migration in roach, which adds additional support for the validity of the p/g model of migration in freshwater systems.
Resumo:
Ultraviolet-ozone treatment is used as a standard surface cleaning procedure for removal of molecular organic contamination from analytical and sensing devices. Here, it is applied for injection-molded polymer microcantilevers before characterization and sensing experiments. This article examines the effects of the surface cleaning process using commercial equipment, in particular on the performance and mechanical properties of the cantilevers. It can be shown that the first chemical aging process essentially consist of the cross linking of the polymer chains together with a physical aging of the material. For longer exposure, the expected thermo-oxidative formation of carbonyl groups sets in and an exposure dependent chemical degradation can be detected. A process time of 20 min was found suitable as a trade-off between cleaning and stability
Resumo:
Partial migration, in which a fraction of a population migrate and the rest remain resident, occurs in an extensive range of species and can have powerful ecological consequences. The question of what drives differences in individual migratory tendency is a contentious one. It has been shown that the timing of partial migration is based upon a trade-off between seasonal fluctuations in predation risk and growth potential. Phenotypic variation in either individual predation risk or growth potential should thus mediate the strength of the trade-off and ultimately predict patterns of partial migration at the individual level (i.e. which individuals migrate and which remain resident). We provide cross-population empirical support for the importance of one component of this model—individual predation risk—in predicting partial migration in wild populations of bream Abramis brama, a freshwater fish. Smaller, high-risk individuals migrate with a higher probability than larger, low-risk individuals, and we suggest that predation risk maintains size-dependent partial migration in this system.
Resumo:
Abstract. During the last decade mobile communications increasingly became part of people's daily routine. Such usage raises new challenges regarding devices' battery lifetime management when using most popular wireless access technologies, such as IEEE 802.11. This paper investigates the energy/delay trade-off of using an end-user driven power saving approach, when compared with the standard IEEE 802.11 power saving algorithms. The assessment was conducted in a real testbed using an Android mobile phone and high-precision energy measurement hardware. The results show clear energy benefits of employing user-driven power saving techniques, when compared with other standard approaches.
Resumo:
Climate models predict more frequent and more severe extreme events (e.g. heat waves, extended drought periods) in Europe during the next decades. The response of plants to elevated temperature is a key issue in this context. Stomatal regulation is not only relevant for the diffusion of CO2 from the ambient air into the leaves, but it plays also an important role for the control of transpiration and leaf cooling. The regulation of stomatal aperture by the water status (hydroactive and hydropassive feed-back) and by internal CO2 availability (CO2 feed-back) are well documented in the literature, while the response of the stomates to elevated temperature was far less considered in the past. Photosynthesis is negatively affected by elevated temperature, but the water loss via transpiration may still be high. In the experiments reported here, bean leaf segments were incubated in darkness floating on water in the range from 20 to 50°C and then analyzed immediately by taking a photograph with a digital microscope. Stomatal aperture was measured on these pictures in order to quantify stomatal opening. After the incubation for 30 min, the opening was 0.66, 2.76 and 4.28 μm at 23, 30 and 35°C respectively. This opening at elevated temperature was fully reversible. Abscisic acid (0.1 μM) in the incubation medium shifted the temperature for stomatal opening to higher values. It can be concluded that elevated temperature stimulates stomatal opening regardless of the CO2 assimilation status and that there is a trade-off between leaf cooling on one hand and limiting water loss during drought periods on the other hand.
Resumo:
Both predators and parasites can elicit behavioral and physiological responses in prey and hosts, respectively. These responses may involve the reallocation of resources and may thus limit each other. We investigated the effects of concurrent pre-laying exposure of great tit females (Parus major) to both a simulated predation risk and a nest-based ectoparasite, the hen flea (Ceratophyllus gallinae), on nestling growth and development. We manipulated perceived predation risk using models and vocalizations of sparrowhawks (Accipiter nisus). At the start of incubation, we swapped whole clutches between treated and untreated nests to separate pre-laying maternal effects from posthatching effects. Since costs and benefits of maternal responses to parasites need to be assessed under parasite pressure, we infested half of the rearing nests with hen fleas. Parasites had negative effects on mass gain and wing growth, both via maternal effects and via direct exposure of nestlings, whereas maternal predation risk had no significant effect. The interaction between predator and parasite treatments was not significant and, thus, suggests the absence of a trade-off between the 2 stressors operating at the level of maternal effects. Alternatively, the complexity of the design, despite a relatively large sample size, may have limited the power for detection of this expected trade-off.
Resumo:
Peptide dendrimers are synthetic tree-like molecules composed of amino acids. There are at least two kinds of preferential structural behaviors exhibited by these molecules, which acquire either compact or noncompact shapes. However, the key structural determinants of such behaviors remained, until now, unstudied. Herein, we conduct a comprehensive investigation of the structural determinants of peptide dendrimers by employing long molecular dynamics simulations to characterize an extended set of third generation dendrimers. Our results clearly show that a trade-off between electrostatic effects and hydrogen bond formation controls structure acquisition in these systems. Moreover, by selectively changing the dendrimers charge we are able to manipulate the exhibited compactness. In contrast, the length of branching residues does not seem to be a major structural determinant. Our results are in accordance with the most recent experimental evidence and shed some light on the key molecular level interactions controlling structure acquisition in these systems. Thus, the results presented constitute valuable insights that can contribute to the development of truly tailor-made dendritic systems.
Resumo:
Traveling-wave excitation close to the speed of light implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles. Pulse-front back-tilt is considered to overcome such trade-off. Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a strong front-end imaging/focusing component.
Resumo:
Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.Methods Root uptake of NH4+ and NO3-, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+.Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.
Resumo:
In this thesis, we develop an adaptive framework for Monte Carlo rendering, and more specifically for Monte Carlo Path Tracing (MCPT) and its derivatives. MCPT is attractive because it can handle a wide variety of light transport effects, such as depth of field, motion blur, indirect illumination, participating media, and others, in an elegant and unified framework. However, MCPT is a sampling-based approach, and is only guaranteed to converge in the limit, as the sampling rate grows to infinity. At finite sampling rates, MCPT renderings are often plagued by noise artifacts that can be visually distracting. The adaptive framework developed in this thesis leverages two core strategies to address noise artifacts in renderings: adaptive sampling and adaptive reconstruction. Adaptive sampling consists in increasing the sampling rate on a per pixel basis, to ensure that each pixel value is below a predefined error threshold. Adaptive reconstruction leverages the available samples on a per pixel basis, in an attempt to have an optimal trade-off between minimizing the residual noise artifacts and preserving the edges in the image. In our framework, we greedily minimize the relative Mean Squared Error (rMSE) of the rendering by iterating over sampling and reconstruction steps. Given an initial set of samples, the reconstruction step aims at producing the rendering with the lowest rMSE on a per pixel basis, and the next sampling step then further reduces the rMSE by distributing additional samples according to the magnitude of the residual rMSE of the reconstruction. This iterative approach tightly couples the adaptive sampling and adaptive reconstruction strategies, by ensuring that we only sample densely regions of the image where adaptive reconstruction cannot properly resolve the noise. In a first implementation of our framework, we demonstrate the usefulness of our greedy error minimization using a simple reconstruction scheme leveraging a filterbank of isotropic Gaussian filters. In a second implementation, we integrate a powerful edge aware filter that can adapt to the anisotropy of the image. Finally, in a third implementation, we leverage auxiliary feature buffers that encode scene information (such as surface normals, position, or texture), to improve the robustness of the reconstruction in the presence of strong noise.
Resumo:
Polymorphism, along with inheritance, is one of the most important features in object-oriented languages, but it is also one of the biggest obstacles to source code comprehension. Depending on the run-time type of the receiver of a message, any one of a number of possible methods may be invoked. Several algorithms for creating accurate call-graphs using static analysis already exist, however, they consume significant time and memory resources. We propose an approach that will combine static and dynamic analysis and yield the best possible precision with a minimal trade-off between used resources and accuracy.
Resumo:
Social networks offer horizontal integration for any mobile platform providing app users with a convenient single sign-on point. Nonetheless, there are growing privacy concerns regarding its use. These vulnerabilities trigger alarm among app developers who fight for their user base: While they are happy to act on users’ information collected via social networks, they are not always willing to sacrifice their adoption rate for this goal. So far, understanding of this trade-off has remained ambiguous. To fill this gap, we employ a discrete choice experiment to explore the role of Facebook Login and investigate the impact of accompanying requests for different information items / actions in the mobile app adoption process. We quantify users’ concerns regarding these items in monetary terms. Beyond hands-on insights for providers, our study contributes to the theoretical discourse on the value of privacy in the growing world of Social Media and mobile web.