19 resultados para Trace elements - Speciation - Tasmania
Resumo:
The volcanic rocks of the Rhön area (Central European Volcanic Province, Germany) belong to a moderately alkali basaltic suite that is associated with minor tephriphonolites, phonotephrites, tephrites, phonolites and trachytes. Based on isotope sytematics (87Sr/86Sr: 0.7033–0.7042; 143Nd/144Nd: 0.51279–0.51287; 206Pb/204Pb: 19.1–19.5), the inferred parental magmas formed by variable degrees of partial melting of a common asthenospheric mantle source (EAR: European Asthenospheric Reservoir of Cebriá and Wilson, 1995). Tephrites, tephriphonolites, phonotephrites, phonolites and trachytes show depletions and enrichments in some trace elements (Sr, Ba, Nb, Zr, Y) indicating that they were generated by broadly similar differentiation processes that were dominated by fractionation of olivine, clinopyroxene, amphibole, apatite and titaniferous magnetite ± plagioclase ± alkalifeldspar. The fractionated samples seem to have evolved by two distinct processes. One is characterized by pure fractional crystallization indicated by increasing Nb (and other incompatible trace element) concentrations at virtually constant 143Nd/144Nd ~ 0.51280 and 87Sr/86Sr ~ 0.7035. The other process involved an assimilation–fractional crystallization (AFC) process where moderate assimilation to crystallization rates produced evolved magmas characterized by higher Nb concentrations at slightly lower 143Nd/144Nd down to 0.51275. Literature data for some of the evolved rocks show more variable 87Sr/86Sr ranging from 0.7037 to 0.7089 at constant 143Nd/144Nd ~ 0.51280. These features may result from assimilation of upper crustal rocks by highly differentiated low-Sr (< 100 ppm Sr) lavas. However, based on the displacement of the differentiated rocks from this study towards lower 143Nd/144Nd ratios and modeled AFC processes in 143Nd/144Nd vs. 87Sr/86Sr and 207Pb/204Pb vs. 143Nd/144Nd space assimilation of lower crustal rocks seems more likely. The view that assimilation of lower crustal rocks played a role is confirmed by high-precision double-spike Pb isotope data that reveal higher 207Pb/204Pb ratios (15.62–15.63) in the differentiated rocks than in the primitive basanites (15.58–15.61). This is compatible with incorporation of radiogenic Pb from lower crustal xenoliths (207Pb/204Pb: 15.63–15.69) into the melt. However, 206Pb/204Pb ratios are similar for the differentiated rocks (19.13–19.35) and the primitive basanites (19.12–19.55) implying that assimilation involved an ancient crustal end member with a higher U/Pb ratio than the mantle source of the basanites. In addition, alteration-corrected δ18O values of the differentiated rocks range from c. 5 to 7‰ which is the same range as observed in the primitive alkaline rocks. This study confirms previous interpretations that highlighted the role of AFC processes in the evolution of alkaline volcanic rocks in the Rhön area of the Central European Volcanic Province.
Resumo:
Screening, Identification and Preliminary Investigation of Target Transporters in Pregnancy Pathologies. INTRODUCTION: Pre-eclampsia (PE), intrauterine growth restriction (IUGR) and gestational diabetes mellitus (GDM) are major sources of clinical morbidity and mortality in pregnant women worldwide. The mechanisms underlying these gestational diseases are complex and not yet fully understood, but one factor contributing to their development is impaired maternal-fetal nutrient transport. Therefore, we aimed to identify candidate membrane transporters involved in transplacental nutrient transfer associated with PE/IUGR or GDM. METHODS: Using in silico strategies, we analysed various gene expression data sets generated on different platforms focusing on solute carriers, ABC transporters and TRP channels in order to identify transporters that are differently expressed between patients and gestational age-matched controls. These bioinformatic analyses were combined with literature data to define a catalogue of target transporters that could be involved in the development of PE/IUGR or GDM. Transporters of interest were then analysed for gene expression using qRT-PCR in placental tissues of patients and controls. For validating the results on protein and functional level, we started to establish an in vitro assay using freshly isolated primary cytotrophoblast cells polarized on the Transwell® system. RESULTS: Using bioinformatics approaches, we initially identified 37 target membrane proteins which were mainly associated with the transport of amino acids, vitamins, and trace elements. At the current state of analysis, the amino acid transporters SLC7A7, SLC38A2, SLC38A5, and the thiamine transporter SLC19A3 showed significant differences in placental mRNA expression between controls and patients affected by PE and/or IUGR. Subsequent gene expression analysis in our in-house GDM placental tissue bank is still ongoing. CONCLUSIONS: Based on our in silico analyses, literature data and first follow-up in vitro validations, we were able to define potentially interesting candidate transporters implicated in PE/IUGR or GDM. To date, additional newly defined candidate targets are being analysed on mRNA level in PE/IUGR and GDM. Subsequent analyses on protein and functional level will reveal whether these targets could be of diagnostic or therapeutical interest in these pregnancy pathologies.
Resumo:
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium in- quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 lg g-1),Al (154 ± 15 lg g-1), Li (30 ± 2 lg g-1), Fe (2.2 ± 0.3 lg g-1), Mn (0.34 ± 0.04 lg g-1), Ge (1.7 ± 0.2 lg g-1) and Ga (0.020 ± 0.002 lg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. oncentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
Resumo:
The Barchi-Kol terrain is a classic locality of ultrahigh-pressure (UHP) metamorphism within the Kokchetav metamorphic belt. We provide a detailed and systematic characterization of four metasedimentary samples using dominant mineral assemblages, mineral inclusions in zircon and monazite, garnet zonation with respect to major and trace elements, and Zr-in-rutile and Ti-in-zircon temperatures. A typical diamond-bearing gneiss records peak conditions of 49 ± 4 kbar and 950–1000 °C. Near isothermal decompression of this rock resulted in the breakdown of phengite associated with a pervasive recrystallization of the rock. The same terrain also contains mica schists that experienced peak conditions close to those of the diamond-bearing rocks, but they were exhumed along a cooler path where phengite remained stable. In these rocks, major and trace element zoning in garnet has been completely equilibrated. A layered gneiss was metamorphosed at UHP conditions in the coesite field, but did not reach diamond-facies conditions (peak conditions: 30 kbar and 800–900 °C). In this sample, garnet records retrograde zonation in major elements and also retains prograde zoning in trace elements. A garnet-kyanite-micaschist that reached significantly lower pressures (24 ± 2 kbar, 710 ± 20 °C) contains garnet with major and trace element zoning. The diverse garnet zoning in samples that experienced different metamorphic conditions allows to establish that diffusional equilibration of rare earth element in garnet likely occurs at ~900–950 °C. Different metamorphic conditions in the four investigated samples are also documented in zircon trace element zonation and mineral inclusions in zircon and monazite. U-Pb geochronology of metamorphic zircon and monazite domains demonstrates that prograde (528–521 Ma), peak (528–522 Ma), and peak to retrograde metamorphism (503–532 Ma) occurred over a relatively short time interval that is indistinguishable from metamorphism of other UHP rocks within the Kokchetav metamorphic belt. Therefore, the assembly of rocks with contrasting P-T trajectories must have occurred in a single subduction-exhumation cycle, providing a snapshot of the thermal structure of a subducted continental margin prior to collision. The rocks were initially buried along a low geothermal gradient. At 20–25 kbar they underwent near isobaric heating of 200 °C, which was followed by continued burial along a low geothermal gradient. Such a step-wise geotherm is in good agreement with predictions from subduction zone thermal models.