154 resultados para Tissue Engineering, Zonal Organisation, Cartilage, Chondrocyte, Clusterin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent findings in the field of biomaterials and tissue engineering provide evidence that surface immobilised growth factors display enhanced stability and induce prolonged function. Cell response can be regulated by material properties and at the site of interest. To this end, we developed scaffolds with covalently bound vascular endothelial growth factor (VEGF) and evaluated their mitogenic effect on endothelial cells in vitro. Nano- (254±133 nm) or micro-fibrous (4.0±0.4 μm) poly(ɛ-caprolactone) (PCL) non-wovens were produced by electrospinning and coated in a radio frequency (RF) plasma process to induce an oxygen functional hydrocarbon layer. Implemented carboxylic acid groups were converted into amine-reactive esters and covalently coupled to VEGF by forming stable amide bonds (standard EDC/NHS chemistry). Substrates were analysed by X-ray photoelectron spectroscopy (XPS), enzyme-linked immuno-assays (ELISA) and immunohistochemistry (anti-VEGF antibody and VEGF-R2 binding). Depending on the reaction conditions, immobilised VEGF was present at 127±47 ng to 941±199 ng per substrate (6mm diameter; concentrations of 4.5 ng mm(-2) or 33.3 ng mm(-2), respectively). Immunohistochemistry provided evidence for biological integrity of immobilised VEGF. Endothelial cell number of primary endothelial cells or immortalised endothelial cells were significantly enhanced on VEGF-functionalised scaffolds compared to native PCL scaffolds. This indicates a sustained activity of immobilised VEGF over a culture period of nine days. We present a versatile method for the fabrication of growth factor-loaded scaffolds at specific concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to use advanced MR techniques to evaluate and compare cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) in the patella and medial femoral condyle (MFC). Thirty-four patients treated with MACT underwent 3-T MRI of the knee. Patients were treated on either patella (n = 17) or MFC (n = 17) cartilage and were matched by age and postoperative interval. For morphological evaluation, the MR observation of cartilage repair tissue (MOCART) score was used, with a 3D-True-FISP sequence. For biochemical assessment, T2 mapping was prepared by using a multiecho spin-echo approach with particular attention to the cartilage zonal structure. Statistical evaluation was done by analyses of variance. The MOCART score showed no significant differences between the patella and MFC (p > or = 0.05). With regard to biochemical T2 relaxation, higher T2 values were found throughout the MFC (p < 0.05). The zonal increase in T2 values from deep to superficial was significant for control cartilage (p < 0.001) and cartilage repair tissue (p < 0.05), with an earlier onset in the repair tissue of the patella. The assessment of cartilage repair tissue of the patella and MFC afforded comparable morphological results, whereas biochemical T2 values showed differences, possibly due to dissimilar biomechanical loading conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The purposes of this study were to use delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) to evaluate the zonal distribution of glycosaminoglycans (GAGs) in normal cartilage and repair tissue and to use 3-T MRI to monitor the GAG content in matrix-associated autologous chondrocyte transplants. SUBJECTS AND METHODS: Fifteen patients who underwent matrix-associated autologous chondrocyte transplantation in the knee joint underwent MRI at baseline and 3-T follow-up MRI 1 year later. Total and zonal changes in longitudinal relaxivity (deltaR1) and relative deltaR1 were calculated for repair tissue and normal hyaline cartilage and compared by use of analysis of variance. RESULTS: There was a significant difference between the mean deltaR1 of repair tissue and that of reference cartilage at baseline and follow-up (p < 0.001). There was a significant increase in deltaR1 value and a decrease in GAG content from the deep layer to the superficial layer in the reference cartilage and almost no variation and significantly higher values for the repair tissue at both examinations. At 1-year follow-up imaging, there was a 22.7% decrease in deltaR1 value in the deep zone of the transplant. CONCLUSION: T1 mapping with dGEMRIC at 3 T shows the zonal structure of normal hyaline cartilage, highly reduced zonal variations in repair tissue, and a tendency toward an increase in global and zonal GAG content 1 year after transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The articular cartilage layer of synovial joints is commonly lesioned by trauma or by a degenerative joint disease. Attempts to repair the damage frequently involve the performance of autologous chondrocyte implantation (ACI). Healthy cartilage must be first removed from the joint, and then, on a separate occasion, following the isolation of the chondrocytes and their expansion in vitro, implanted within the lesion. The disadvantages of this therapeutic approach include the destruction of healthy cartilage-which may predispose the joint to osteoarthritic degeneration-the necessarily restricted availability of healthy tissue, the limited proliferative capacity of the donor cells-which declines with age-and the need for two surgical interventions. We postulated that it should be possible to induce synovial stem cells, which are characterized by high, age-independent, proliferative and chondrogenic differentiation capacities, to lay down cartilage within the outer juxtasynovial space after the transcutaneous implantation of a carrier bearing BMP-2 in a slow-release system. The chondrocytes could be isolated on-site and immediately used for ACI. To test this hypothesis, Chinchilla rabbits were used as an experimental model. A collagenous patch bearing BMP-2 in a slow-delivery vehicle was sutured to the inner face of the synovial membrane. The neoformed tissue was excised 5, 8, 11 and 14 days postimplantation for histological and histomorphometric analyses. Neoformed tissue was observed within the outer juxtasynovial space already on the 5th postimplantation day. It contained connective and adipose tissues, and a central nugget of growing cartilage. Between days 5 and 14, the absolute volume of cartilage increased, attaining a value of 12 mm(3) at the latter juncture. Bone was deposited in measurable quantities from the 11th day onwards, but owing to resorption, the net volume did not exceed 1.5 mm(3) (14th day). The findings confirm our hypothesis. The quantity of neoformed cartilage that is deposited after only 1 week within the outer juxtasynovial space would yield sufficient cells for ACI. Since the BMP-2-bearing patches would be implanted transcutaneously in humans, only one surgical or arthroscopic intervention would be called for. Moreover, most importantly, sufficient numbers of cells could be generated in patients of all ages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-regeneration capacity of articular cartilage is limited, due to its avascular and aneural nature. Loaded explants and cell cultures demonstrated that chondrocyte metabolism can be regulated via physiologic loading. However, the explicit ranges of mechanical stimuli that correspond to favourable metabolic response associated with extracellular matrix (ECM) synthesis are elusive. Unsystematic protocols lacking this knowledge produce inconsistent results. This study aims to determine the intrinsic ranges of physical stimuli that increase ECM synthesis and simultaneously inhibit nitric oxide (NO) production in chondrocyte-agarose constructs, by numerically re-evaluating the experiments performed by Tsuang et al. (2008). Twelve loading patterns were simulated with poro-elastic finite element models in ABAQUS. Pressure on solid matrix, von Mises stress, maximum principle stress and pore pressure were selected as intrinsic mechanical stimuli. Their development rates and magnitudes at the steady state of cyclic loading were calculated with MATLAB at the construct level. Concurrent increase in glycosaminoglycan and collagen was observed at 2300 Pa pressure and 40 Pa/s pressure rate. Between 0-1500 Pa and 0-40 Pa/s, NO production was consistently positive with respect to controls, whereas ECM synthesis was negative in the same range. A linear correlation was found between pressure rate and NO production (R = 0.77). Stress states identified in this study are generic and could be used to develop predictive algorithms for matrix production in agarose-chondrocyte constructs of arbitrary shape, size and agarose concentration. They could also be helpful to increase the efficacy of loading protocols for avascular tissue engineering. Copyright (c) 2010 John Wiley \& Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To use magnetization transfer (MT) imaging in the visualization of healthy articular cartilage and cartilage repair tissue after different cartilage repair procedures, and to assess global as well as zonal values and compare the results to T2-relaxation. MATERIALS AND METHODS: Thirty-four patients (17 after microfracture [MFX] and 17 after matrix-associated autologous cartilage transplantation [MACT]) were examined with 3T MRI. The MT ratio (MTR) was calculated from measurements with and without MT contrast. T2-values were evaluated using a multiecho, spin-echo approach. Global (full thickness of cartilage) and zonal (deep and superficial aspect) region-of-interest assessment of cartilage repair tissue and normal-appearing cartilage was performed. RESULTS: In patients after MFX and MACT, the global MTR of cartilage repair tissue was significantly lower compared to healthy cartilage. In contrast, using T2, cartilage repair tissue showed significantly lower T2 values only after MFX, whereas after MACT, global T2 values were comparable to healthy cartilage. For zonal evaluation, MTR and T2 showed a significant stratification within healthy cartilage, and T2 additionally within cartilage repair tissue after MACT. CONCLUSION: MT imaging is capable and sensitive in the detection of differences between healthy cartilage and areas of cartilage repair and might be an additional tool in biochemical cartilage imaging. For both MTR and T2 mapping, zonal assessment is desirable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose was to evaluate the relative glycosaminoglycan (GAG) content of repair tissue in patients after microfracturing (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint with a dGEMRIC technique based on a newly developed short 3D-GRE sequence with two flip angle excitation pulses. Twenty patients treated with MFX or MACT (ten in each group) were enrolled. For comparability, patients from each group were matched by age (MFX: 37.1 +/- 16.3 years; MACT: 37.4 +/- 8.2 years) and postoperative interval (MFX: 33.0 +/- 17.3 months; MACT: 32.0 +/- 17.2 months). The Delta relaxation rate (DeltaR1) for repair tissue and normal hyaline cartilage and the relative DeltaR1 were calculated, and mean values were compared between both groups using an analysis of variance. The mean DeltaR1 for MFX was 1.07 +/- 0.34 versus 0.32 +/- 0.20 at the intact control site, and for MACT, 1.90 +/- 0.49 compared to 0.87 +/- 0.44, which resulted in a relative DeltaR1 of 3.39 for MFX and 2.18 for MACT. The difference between the cartilage repair groups was statistically significant. The new dGEMRIC technique based on dual flip angle excitation pulses showed higher GAG content in patients after MACT compared to MFX at the same postoperative interval and allowed reducing the data acquisition time to 4 min.