47 resultados para Tire deformation
Resumo:
OBJECTIVE: The effects of mechanical deformation of intact cartilage tissue on chondrocyte biosynthesis in situ have been well documented, but the mechanotransduction pathways that regulate such phenomena have not been elucidated completely. The goal of this study was to examine the effects of tissue deformation on the morphology of a range of intracellular organelles which play a major role in cell biosynthesis and metabolism. DESIGN: Using chemical fixation, high pressure freezing, and electron microscopy, we imaged chondrocytes within mechanically compressed cartilage explants at high magnification and quantitatively and qualitatively assessed changes in organelle volume and shape caused by graded levels of loading. RESULTS: Compression of the tissue caused a concomitant reduction in the volume of the extracellular matrix (ECM), chondrocyte, nucleus, rough endoplasmic reticulum, and mitochondria. Interestingly, however, the Golgi apparatus was able to resist loss of intraorganelle water and retain a portion of its volume relative to the remainder of the cell. These combined results suggest that a balance between intracellular mechanical and osmotic gradients govern the changes in shape and volume of the organelles as the tissue is compressed. CONCLUSIONS: Our results lead to the interpretive hypothesis that organelle volume changes appear to be driven mainly by osmotic interactions while shape changes are mediated by structural factors, such as cytoskeletal interactions that may be linked to extracellular matrix deformations. The observed volume and shape changes of the chondrocyte organelles and the differential behavior between organelles during tissue compression provide evidence for an important mechanotransduction pathway linking translational and post-translational events (e.g., elongation and sulfation of glycosaminoglycans (GAGs) in the Golgi) to cell deformation.
Resumo:
OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.
Resumo:
Purpose: To quantify the in vivo deformations of the popliteal artery during leg flexion in subjects with clinically relevant peripheral artery disease (PAD). Methods: Five patients (4 men; mean age 69 years, range 56–79) with varying calcification levels of the popliteal artery undergoing endovascular revascularization underwent 3-dimensional (3D) rotational angiography. Image acquisition was performed with the leg straight and with a flexion of 70°/20° in the knee/hip joints. The arterial centerline and the corresponding branches in both positions were segmented to create 3D reconstructions of the arterial trees. Axial deformation, twisting, and curvatures were quantified. Furthermore, the relationships between the calcification levels and the deformations were investigated. Results: An average shortening of 5.9%±2.5% and twist rate of 3.8±2.2°/cm in the popliteal artery were observed. Maximal curvatures in the straight and flexed positions were 0.12±0.04 cm−1 and 0.24±0.09 cm−1, respectively. As the severity of calcification increased, the maximal curvature in the straight position increased from 0.08 to 0.17 cm−1, while an increase from 0.17 to 0.39 cm−1 was observed for the flexed position. Axial elongations and arterial twisting were not affected by the calcification levels. Conclusion: The popliteal artery of patients with symptomatic PAD is exposed to significant deformations during flexion of the knee joint. The severity of calcification directly affects curvature, but not arterial length or twisting angles. This pilot study also showed the ability of rotational angiography to quantify the 3D deformations of the popliteal artery in patients with various levels of calcification.
Resumo:
Central Switzerland lies tectonically in an intraplate area and recurrence rates of strong earthquakes exceed the time span covered by historic chronicles. However, many lakes are present in the area that act as natural seismographs: their continuous, datable and high-resolution sediment succession allows extension of the earthquake catalogue to pre-historic times. This study reviews and compiles available data sets and results from more than 10 years of lacustrine palaeoseismological research in lakes of northern and Central Switzerland. The concept of using lacustrine mass-movement event stratigraphy to identify palaeo-earthquakes is showcased by presenting new data and results from Lake Zurich. The Late Glacial to Holocene mass-movement units in this lake document a complex history of varying tectonic and environmental impacts. Results include sedimentary evidence of three major and three minor, simultaneously triggered basin-wide lateral slope failure events interpreted as the fingerprints of palaeoseismic activity. A refined earthquake catalogue, which includes results from previous lake studies, reveals a non-uniform temporal distribution of earthquakes in northern and Central Switzerland. A higher frequency of earthquakes in the Late Glacial and Late Holocene period documents two different phases of neotectonic activity; they are interpreted to be related to isostatic post-glacial rebound and relatively recent (re-)activation of seismogenic zones, respectively. Magnitudes and epicentre reconstructions for the largest identified earthquakes provide evidence for two possible earthquake sources: (i) a source area in the region of the Alpine or Sub-Alpine Front due to release of accumulated north-west/south-east compressional stress related to an active basal thrust beneath the Aar massif; and (ii) a source area beneath the Alpine foreland due to reactivation of deep-seated strike-slip faults. Such activity has been repeatedly observed instrumentally, for example, during the most recent magnitude 4.2 and 3.5 earthquakes of February 2012, near Zug. The combined lacustrine record from northern and Central Switzerland indicates that at least one of these potential sources has been capable of producing magnitude 6.2 to 6.7 events in the past.
Resumo:
Numerical simulation experiments give insight into the evolving energy partitioning during high-strain torsion experiments of calcite. Our numerical experiments are designed to derive a generic macroscopic grain size sensitive flow law capable of describing the full evolution from the transient regime to steady state. The transient regime is crucial for understanding the importance of micro structural processes that may lead to strain localization phenomena in deforming materials. This is particularly important in geological and geodynamic applications where the phenomenon of strain localization happens outside the time frame that can be observed under controlled laboratory conditions. Ourmethod is based on an extension of the paleowattmeter approach to the transient regime. We add an empirical hardening law using the Ramberg-Osgood approximation and assess the experiments by an evolution test function of stored over dissipated energy (lambda factor). Parameter studies of, strain hardening, dislocation creep parameter, strain rates, temperature, and lambda factor as well asmesh sensitivity are presented to explore the sensitivity of the newly derived transient/steady state flow law. Our analysis can be seen as one of the first steps in a hybrid computational-laboratory-field modeling workflow. The analysis could be improved through independent verifications by thermographic analysis in physical laboratory experiments to independently assess lambda factor evolution under laboratory conditions.
Resumo:
As the complexity of active medical implants increases, the task of embedding a life-long power supply at the time of implantation becomes more challenging. A periodic renewal of the energy source is often required. Human energy harvesting is, therefore, seen as a possible remedy. In this paper, we present a novel idea to harvest energy from the pressure-driven deformation of an artery by the principle of magneto-hydrodynamics. The generator relies on a highly electrically conductive fluid accelerated perpendicularly to a magnetic field by means of an efficient lever arm mechanism. An artery with 10 mm inner diameter is chosen as a potential implantation site and its ability to drive the generator is established. Three analytical models are proposed to investigate the relevant design parameters and to determine the existence of an optimal configuration. The predicted output power reaches 65 μW according to the first two models and 135 μW according to the third model. It is found that the generator, designed as a circular structure encompassing the artery, should not exceed a total volume of 3 cm3.
Resumo:
Engineers are confronted with the energy demand of active medical implants in patients with increasing life expectancy. Scavenging energy from the patient’s body is envisioned as an alternative to conventional power sources. Joining in this effort towards human-powered implants, we propose an innovative concept that combines the deformation of an artery resulting from the arterial pressure pulse with a transduction mechanism based on magneto-hydrodynamics. To overcome certain limitations of a preliminary analytical study on this topic, we demonstrate here a more accurate model of our generator by implementing a three-dimensional multiphysics finite element method (FEM) simulation combining solid mechanics, fluid mechanics, electric and magnetic fields as well as the corresponding couplings. This simulation is used to optimize the generator with respect to several design parameters. A first validation is obtained by comparing the results of the FEM simulation with those of the analytical approach adopted in our previous study. With an expected overall conversion efficiency of 20% and an average output power of 30 μW, our generator outperforms previous devices based on arterial wall deformation by more than two orders of magnitude. Most importantly, our generator provides sufficient power to supply a cardiac pacemaker.
Resumo:
The Penninic nappes in the Swiss Alps formed during continental collision between the Adriatic and European plates in Cenozoic times. Although intensely studied, the finite geometry of the basement-bearing Penninic nappes in western Switzerland has remained a matter of debate for decades (e.g., “Siviez-Mischabel dilemma”) and the paleogeographic origin of various nappes has been disputed. Here, we present new structural data for the central part of the Penninic Bernard nappe complex, which contains pre-Permian basement and Permo-Mesozoic metasedimentary units. Our lithological and structural observations indicate that the discrepancy between the different structural models proposed for the Bernard nappe complex can be explained by a lateral discontinuity. In the west, the presence of a Permian graben caused complex isoclinal folding, whereas in the east, the absence of such a graben resulted mainly in imbricate thrusting. The overall geometry of the Bernard nappe complex is the result of three main deformation phases: (1) detachment of Mesozoic cover sediments along Triassic evaporites (Evolène phase) during the early stages of collision, (2) Eocene top-to-the-N(NW) nappe stacking (Anniviers phase), and (3) subsequent backfolding and backshearing (Mischabel phase). The southward localized backshearing is key to understand the structural position and paleogeographic origin of units, such as the Frilihorn and Cimes Blanches “nappes” and the Antrona ophiolites. Based on these observations, we present a new tectonic model for the entire Penninic region of western Switzerland and discuss this model in terms of continental collision zone processes.
Resumo:
We describe a method for rapid identification and precise quantification of slope deformation using a portable radar interferometer. A rockslide with creep-like behavior was identified in the rugged and inaccessible headwaters of the Illgraben debris-flow catchment, located in the Central Swiss Alps. The estimated volume of the moving rock mass was approximately 0.5 x 10(6) m(3) with a maximum daily (3-D) displacement rate of 3 mm. Fast scene acquisition in the order of 6 s/scene led to uniquely precise mapping of spatial and temporal variability of atmospheric phase delay. Observations led to a simple qualitative model for prediction of atmospheric disturbances using a simple model for solar radiation, which can be used for advanced campaign planning for short observation periods (hours to days).
Resumo:
Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively.