160 resultados para Time-domain nuclear magnetic resonance relaxometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In schizophrenic psychoses, structural and functional alterations of the amygdala have been demonstrated by several neuroimaging studies. However, postmortem examinations on the brains of schizophrenics did not confirm the volume changes reported by volumetric magnetic resonance imaging (MRI) studies. In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed a trimodal MRI design including high-resolution volumetry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) in a sample of 14 schizophrenic patients and 14 matched controls. Three-dimensional MRI volumetry revealed a significant reduction of amygdala raw volumes in the patient group, while amygdala volumes normalized for intracranial volume did not differ between the two groups. The regional diffusional anisotropy of the amygdala, expressed as inter-voxel coherence (COH), showed a marked and significant reduction in schizophrenics. Assessment of qMTI parameters yielded significant group differences for the T2 time of the bound proton pool and the T1 time of the free proton pool, while the semi-quantitative magnetization transfer ratio (MTR) did not differ between the groups. The application of multimodal MRI protocols is diagnostically relevant for the differentiation between schizophrenic patients and controls and provides a new strategy for the detection and characterization of subtle structural alterations in defined regions of the living brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1H-magnetic resonance spectroscopy ((1)H-MRS) of deoxymyoglobin (DMb) provides a means to noninvasively monitor the oxygenation state of human skeletal muscle in work and disease. As shown in this work, it also offers the opportunity to measure the absolute tissue content of DMb, the basic oxygen consumption of resting muscle, and the reperfusion characteristics after release of a pressure cuff. The methodology to determine these tissue properties simultaneously at two positions along the calf is presented. The obtained values are in agreement with invasive determinations. The reproducibility of the (1)H-MRS measurements is established for healthy controls and patients with peripheral arterial disease (PAD). A location dependence in axial direction, as well as differences between controls and patients are demonstrated for all parameters. The reoxygenation time in particular is expected to provide a means to quantitatively monitor therapies aimed at improving muscular perfusion in these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To perform a quantitative and qualitative comparison of gadobutrol and gadoterate in three-station contrast enhanced magnetic resonance angiography (CE-MRA) of the lower limbs. MATERIALS AND METHODS: In this prospective randomized controlled trial, 52 patients with leg ischemia were randomly assigned to one of two groups receiving either gadobutrol (1.0 mmol Gd/mL, 15 mL) or gadoterate (0.5 mmol Gd/mL, 30 mL). Three-station 3D CE-MRAs from the pelvis to the ankles were performed with moving-table technique on a 1.5T MR scanner. Injection time was identical in both groups. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for 816 arteries. Contrast quality in 1196 vessel segments was evaluated separately by two blinded readers on a three-point scale. RESULTS: Mean SNR (61.8 +/- 7.8 for gadobutrol vs. 61.9 +/- 9.1 for gadoterate, P = 0.257), CNR (52.8 +/- 9.1 vs. 52.8 +/- 10.7, P = 0.154), and qualitative ranking (1.41 vs. 1.44, P = 0.21) for all vessels did not differ significantly between the two patient groups. The overall quality was good in 90.4% with gadoterate and 94.2% with gadobutrol (P = 0.462). CONCLUSION: High-concentration gadobutrol allows neither a higher CNR nor any qualitative advantage over the ordinary unspecific Gd agent gadoterate when the same Gd load and injection times are used in multistation CE-MRA of the peripheral arteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging of inhaled fluorinated inert gases ((19)F-MRI) such as sulfur hexafluoride (SF(6)) allows for analysis of ventilated air spaces. In this study, the possibility of using this technique to image lung function was assessed. For this, (19)F-MRI of inhaled SF(6) was compared with respiratory gas analysis, which is a global but reliable measure of alveolar gas fraction. Five anesthetized pigs underwent multiple-breath wash-in procedures with a gas mixture of 70% SF(6) and 30% oxygen. Two-dimensional (19)F-MRI and end-expiratory gas fraction analysis were performed after 4 to 24 inhaled breaths. Signal intensity of (19)F-MRI and end-expiratory SF(6) fraction were evaluated with respect to linear correlation and reproducibility. Time constants were estimated by both MRI and respiratory gas analysis data and compared for agreement. A good linear correlation between signal intensity and end-expiratory gas fraction was found (correlation coefficient 0.99+/-0.01). The data were reproducible (standard error of signal intensity 8% vs. that of gas fraction 5%) and the comparison of time constants yielded a sufficient agreement. According to the good linear correlation and the acceptable reproducibility, we suggest the (19)F-MRI to be a valuable tool for quantification of intrapulmonary SF(6) and hence lung function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Lymph node staging of bladder or prostate cancer using conventional imaging is limited. Newer approaches such as ultrasmall superparamagnetic particles of iron oxide (USPIO) and diffusion-weighted magnetic resonance imaging (DW-MRI) have inconsistent diagnostic accuracy and are difficult to interpret. OBJECTIVE: To assess whether combined USPIO and DW-MRI (USPIO-DW-MRI) improves staging of normal-sized lymph nodes in bladder and/or prostate cancer patients. DESIGN, SETTING, AND PARTICIPANTS: Twenty-one consecutive patients with bladder and/or prostate cancer were enrolled between May and October 2008. One patient was excluded secondary to bone metastases detected on DW-MRI with subsequent abstention from surgery. INTERVENTION: Patients preoperatively underwent 3-T MRI before and after administration of lymphotropic USPIO using conventional MRI sequences combined with DW-MRI. Surgery consisted of extended pelvic lymphadenectomy and resection of primary tumors. MEASUREMENTS: Diagnostic accuracies of the new combined USPIO-DW-MRI approach compared with the "classic" reading method evaluating USPIO images without and with DW-MRI versus histopathology were evaluated. Duration of the two reading methods was noted for each patient. RESULTS AND LIMITATIONS: Diagnostic accuracy (90% per patient or per pelvic side) was comparable for the classic and the USPIO-DW-MRI reading method, while time of analysis with 80 min (range 45-180 min) for the classic and 13 min (range 5-90 min) for the USPIO-DW-MRI method was significantly shorter (p<0.0001). Interobserver agreement (three blinded readers) was high with a kappa value of 0.75 and 0.84, respectively. Histopathological analysis showed metastases in 26 of 802 analyzed lymph nodes (3.2%). Of these, 24 nodes (92%) were correctly diagnosed as positive on USPIO-DW-MRI. In two patients, one micrometastasis each (1.0x0.2 mm; 0.7x0.4 mm) was missed in all imaging studies. CONCLUSIONS: USPIO-DW-MRI is a fast and accurate method for detecting pelvic lymph node metastases, even in normal-sized nodes of bladder or prostate cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess if delayed gadolinium MRI of cartilage using postcontrast T(1) (T(1Gd)) is sufficient for evaluating cartilage damage in femoroacetabular impingement without using noncontrast values (T(10)). T(1Gd) and DeltaR(1) (1/T(1Gd) - 1/T(10)) that include noncontrast T(1) measurements were studied in two grades of osteoarthritis and in a control group of asymptomatic young-adult volunteers. Differences between T(1Gd) and DeltaR(1) values for femoroacetabular impingement patients and volunteers were compared. There was a very high correlation between T(1Gd) and DeltaR(1) in all study groups. In the study cohort with Tonnis grade 0, correlation (r) was -0.95 and -0.89 with Tonnis grade 1 and -0.88 in asymptomatic volunteers, being statistically significant (P < 0.001) for all groups. For both T(1Gd) and DeltaR(1), a statistically significant difference was noted between patients and control group. Significant difference was also noted for both T(1Gd) and DeltaR(1) between the patients with Tonnis grade 0 osteoarthritis and those with grade 1 changes. Our results prove a linear correlation between T(1Gd) and DeltaR(1), suggesting that T(1Gd) assessment is sufficient for the clinical utility of delayed gadolinium MRI of cartilage in this setting and additional time-consuming T(10) evaluation may not be needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this prospective study was to compare the intraindividual aperistaltic effect of 40 mg hyoscine N-butylbromide (HBB/Buscopan) with that of 1 mg glucagon on small bowel motility by using magnetic resonance imaging (MRI). Ten healthy volunteers underwent two separate 1.5-T MRI studies (HBB/glucagon) after a standardized oral preparation with an aqueous solution of Gd-DOTA and ispaghula (Metamucil). A 2D T1-w GRE sequence was acquired (TR 2.7 ms/TE 1.3 ms, temporal resolution 0.25 s) before and after intravenous (i.v.) drug administration and motility was followed over 1 h. On the resulting images the cross-sectional luminal diameters were assessed and plotted over time. Baseline motility frequency, onset of aperistalsis, duration of arrest, reappearance of motility and return to normal motility were analysed. Significant differences regarding reliability and duration of aperistalsis were observed. In the HBB group aperistalsis lasted a mean of 6.8 +/- 5.3 min compared with 18.3 +/- 7 min after glucagon (p < 0.0001). In 50% of cases HBB did not accomplish aperistalsis, whereas glucagon always succeeded (p = 0.05). There were no significant differences in terms of baseline and end frequencies for the onset of aperistalsis (22.2 +/- 37.5 s HBB/13.4 +/- 9.2 s glucagon, p = 0.1), nor for the return to normal motility. Arrest of small bowel motion is achieved more reliably and lasts significantly longer after i.v. administration of 1 mg glucagon compared with 40 mg HBB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Conventional cross-sectional imaging with computed tomography and magnetic resonance imaging (MRI) has limited accuracy for lymph node (LN) staging in bladder and prostate cancer patients. Objective To prospectively assess the diagnostic accuracy of combined ultrasmall superparamagnetic particles of iron oxide (USPIO) MRI and diffusion-weighted (DW) MRI in staging of normal-sized pelvic LNs in bladder and/or prostate cancer patients. Design, setting, and participants Examinations with 3-Tesla MRI 24–36 h after administration of USPIO using conventional MRI sequences combined with DW-MRI (USPIO-DW-MRI) were performed in 75 patients with clinically localised bladder and/or prostate cancer staged previously as N0 by conventional cross-sectional imaging. Combined USPIO-DW-MRI findings were analysed by three independent readers and correlated with histopathologic LN findings after extended pelvic LN dissection (PLND) and resection of primary tumours. Outcome measurements and statistical analysis Sensitivity and specificity for LN status of combined USPIO-DW-MRI versus histopathologic findings were evaluated per patient (primary end point) and per pelvic side (secondary end point). Time required for combined USPIO-DW-MRI reading was assessed. Results and limitations At histopathologic analysis, 2993 LNs (median: 39 LNs; range: 17–68 LNs per patient) with 54 LN metastases (1.8%) were found in 20 of 75 (27%) patients. Per-patient sensitivity and specificity for detection of LN metastases by the three readers ranged from 65% to 75% and 93% to 96%, respectively; sensitivity and specificity per pelvic side ranged from 58% to 67% and 94% to 97%, respectively. Median reading time for the combined USPIO-DW-MRI images was 9 min (range: 3–26 min). A potential limitation is the absence of a node-to-node correlation of combined USPIO-DW-MRI and histopathologic analysis. Conclusions Combined USPIO-DW-MRI improves detection of metastases in normal-sized pelvic LNs of bladder and/or prostate cancer patients in a short reading time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical maturation of the brain can be studied noninvasively by (1)H magnetic resonance spectroscopy (MRS) in human infants. Detailed time courses of cerebral tissue contents are known for the most abundant metabolites only, and whether or not premature birth affects biochemical maturation of the brain is disputed. Hence, the last trimester of gestation was observed in infants born prematurely, and their cerebral metabolite contents at birth and at expected term were compared with those of fullterm infants. Successful quantitative short-TE (1)H MRS was performed in three cerebral locations in 21 infants in 28 sessions (gestational age 32-43 weeks). The spectra were analyzed with linear combination model fitting, considerably extending the range of observable metabolites to include acetate, alanine, aspartate, cholines, creatines, gamma-aminobutyrate, glucose, glutamine, glutamate, glutathione, glycine, lactate, myo-inositol, macromolecular contributions, N-acetylaspartate, N-acetylaspartylglutamate, o-phosphoethanolamine, scyllo-inositol, taurine, and threonine. Significant effects of age and location were found for many metabolites, including the previously observed neuronal maturation reflected by an increase in N-acetylaspartate. Absolute brain metabolite content in premature infants at term was not considerably different from that in fullterm infants, indicating that prematurity did not affect biochemical brain maturation substantially in the studied population, which did not include infants of extremely low birthweight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE We prospectively assessed the diagnostic accuracy of diffusion-weighted magnetic resonance imaging for detecting significant prostate cancer. MATERIALS AND METHODS We performed a prospective study of 111 consecutive men with prostate and/or bladder cancer who underwent 3 Tesla diffusion-weighted magnetic resonance imaging of the pelvis without an endorectal coil before radical prostatectomy (78) or cystoprostatectomy (33). Three independent readers blinded to clinical and pathological data assigned a prostate cancer suspicion grade based on qualitative imaging analysis. Final pathology results of prostates with and without cancer served as the reference standard. Primary outcomes were the sensitivity and specificity of diffusion-weighted magnetic resonance imaging for detecting significant prostate cancer with significance defined as a largest diameter of the index lesion of 1 cm or greater, extraprostatic extension, or Gleason score 7 or greater on final pathology assessment. Secondary outcomes were interreader agreement assessed by the Fleiss κ coefficient and image reading time. RESULTS Of the 111 patients 93 had prostate cancer, which was significant in 80 and insignificant in 13, and 18 had no prostate cancer on final pathology results. The sensitivity and specificity of diffusion-weighted magnetic resonance imaging for detecting significant PCa was 89% to 91% and 77% to 81%, respectively, for the 3 readers. Interreader agreement was good (Fleiss κ 0.65 to 0.74). Median reading time was between 13 and 18 minutes. CONCLUSIONS Diffusion-weighted magnetic resonance imaging (3 Tesla) is a noninvasive technique that allows for the detection of significant prostate cancer with high probability without contrast medium or an endorectal coil, and with good interreader agreement and a short reading time. This technique should be further evaluated as a tool to stratify patients with prostate cancer for individualized treatment options.