47 resultados para Tibetan Mastiff
Resumo:
The Tibeto-Burman linguistic phylum was identified in 1823. However, the term “Tibeto-Burman” was later used with two different mean- ings, one by scholars following Klaproth’s polyphyletic framework and another by scholars operating within the Indo-Chinese paradigm. Yet the enduring failure of Sino-Tibetanists to produce any evidence for the Indo-Chinese phylogenetic model compels us to conclude that there is no such language family as Sino-Tibetan. Instead, Tibetan forms part of the Trans-Himalayan linguistic phylum, or Tibeto-Burman in Klaproth’s sense. Robert Shafer coined the terms “Bodic” and “Bodish” for subgroups including Tibetan and languages with varying degrees of linguistic propin- quity to Tibetan, and Nicolas Tournadre has also recently coined the term “Tibetic.” What are Tibetic, Bodish, and Bodic? Which languages are the closest relatives of Tibetan? What do we know about the structure of the Trans-Himalayan linguistic phylum as a whole? Based on the phylogeny of the language family, which inferences can be made about the ethnolinguis- tic prehistory of the Tibetan Plateau and surrounding regions?
Resumo:
The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.
Resumo:
BACKGROUND: The neuronal ceroid lipofuscinoses (NCL) are a heterogenous group of inherited progressive neurodegenerative diseases in different mammalian species. Tibetan Terrier and Polish Owczarek Nizinny (PON) dogs show rare late-onset NCL variants with autosomal recessive inheritance, which can not be explained by mutations of known human NCL genes. These dog breeds represent animal models for human late-onset NCL. In mice the chloride channel 3 gene (Clcn3) encoding an intracellular chloride channel was described to cause a phenotype similar to NCL. RESULTS: Two full-length cDNA splice variants of the canine CLCN3 gene are reported. The current canine whole genome sequence assembly was used for gene structure analyses and revealed 13 coding CLCN3 exons in 52 kb of genomic sequence. Sequence analysis of the coding exons and flanking intron regions of CLCN3 using six NCL-affected Tibetan terrier dogs and an NCL-affected Polish Owczarek Nizinny (PON) dog, as well as eight healthy Tibetan terrier dogs revealed 13 SNPs. No consistent CLCN3 haplotype was associated with NCL. CONCLUSION: For the examined animals we excluded the complete coding region and adjacent intronic regions of canine CLCN3 to harbor disease-causing mutations. Therefore it seems to be unlikely that a mutation in this gene is responsible for the late-onset NCL phenotype in these two dog breeds.
Resumo:
Alveolar echinococcosis (AE)--caused by the cestode Echinococcus multilocularis--is a severe zoonotic disease found in temperate and arctic regions of the northern hemisphere. Even though the transmission patterns observed in different geographical areas are heterogeneous, the nuclear and mitochondrial targets usually used for the genotyping of E. multilocularis have shown only a marked genetic homogeneity in this species. We used microsatellite sequences, because of their high typing resolution, to explore the genetic diversity of E. multilocularis. Four microsatellite targets (EmsJ, EmsK, and EmsB, which were designed in our laboratory, and NAK1, selected from the literature) were tested on a panel of 76 E. multilocularis samples (larval and adult stages) obtained from Alaska, Canada, Europe, and Asia. Genetic diversity for each target was assessed by size polymorphism analysis. With the EmsJ and EmsK targets, two alleles were found for each locus, yielding two and three genotypes, respectively, discriminating European isolates from the other groups. With NAK1, five alleles were found, yielding seven genotypes, including those specific to Tibetan and Alaskan isolates. The EmsB target, a tandem repeated multilocus microsatellite, found 17 alleles showing a complex pattern. Hierarchical clustering analyses were performed with the EmsB findings, and 29 genotypes were identified. Due to its higher genetic polymorphism, EmsB exhibited a higher discriminatory power than the other targets. The complex EmsB pattern was able to discriminate isolates on a regional and sectoral level, while avoiding overdistinction. EmsB will be used to assess the putative emergence of E. multilocularis in Europe.