24 resultados para Temperate Estuary


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daphnia can ingest methane-oxidizing bacteria and incorporate methanogenic carbon into their biomass, leading to low stable carbon isotope ratios (expressed as δ13C values) of their tissue. Therefore, δ13C analysis of Daphnia resting eggs (ephippia) in lake sediment records can potentially be used to reconstruct past in-lake availability of methane (CH4). However, detailed multilake studies demonstrating that δ13C values of recently deposited Daphnia ephippia (δ13Cephippia) are systematically related to in-lake CH4 concentrations (CH4aq) are still missing. We measured δ13Cephippia from surface sediments of 15 small lakes in Europe, and compared these values with late-summer CH4aq. δ13Cephippia ranged from −51.6‰ to −25.9‰, and was strongly correlated with CH4aq in the surface water and above the sediment (r −0.73 and −0.77, respectively), whereas a negative rather than the expected positive correlation was found with δ13C values of carbon dioxide (CO2) (r −0.54), and no correlation was observed with CO2aq. At eight sites, offsets between δ13 CCO2 and δ13Cephippia exceeded offsets between δ13 CCO2 and δ13Calgae reported in literature. δ13Cephippia was positively correlated with δ13C values of sedimentary organic matter (r 0.54), but up to 20.7‰ lower in all except one of the lakes (average −6.1‰). We conclude that incorporation of methanogenic carbon prior to ephippia formation must have been widespread by Daphnia in our study lakes, especially those with high CH4aq. Our results suggest a systematic relationship between δ13Cephippia values and CH4aq in small temperate lakes, and that δ13Cephippia analysis on sediment records may provide insights into past changes in in-lake CH4aq.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic soils in peatlands store a great proportion of the global soil carbon pool and can lose carbon via the atmosphere due to degradation. In Germany, most of the greenhouse gas (GHG) emissions from organic soils are attributed to sites managed as grassland. Here, we investigated a land use gradient from near-natural wetland (NW) to an extensively managed (GE) to an intensively managed grassland site (GI), all formed in the same bog complex in northern Germany. Vertical depth profiles of δ13C, δ15N, ash content, C / N ratio and bulk density as well as radiocarbon ages were studied to identify peat degradation and to calculate carbon loss. At all sites, including the near-natural site, δ13C depth profiles indicate aerobic decomposition in the upper horizons. Depth profiles of δ15N differed significantly between sites with increasing δ15N values in the top soil layers paralleling an increase in land use intensity owing to differences in peat decomposition and fertilizer application. At both grassland sites, the ash content peaked within the first centimetres. In the near-natural site, ash contents were highest in 10–60 cm depth. The ash profiles, not only at the managed grassland sites, but also at the near-natural site indicate that all sites were influenced by anthropogenic activities either currently or in the past, most likely due to drainage. Based on the enrichment of ash content and changes in bulk density, we calculated the total carbon loss from the sites since the peatland was influenced by anthropogenic activities. Carbon loss at the sites increased in the following order: NW < GE < GI. Radiocarbon ages of peat in the topsoil of GE and GI were hundreds of years, indicating the loss of younger peat material. In contrast, peat in the first centimetres of the NW was only a few decades old, indicating recent peat growth. It is likely that the NW site accumulates carbon today but was perturbed by anthropogenic activities in the past. Together, all biogeochemical parameters indicate a degradation of peat due to (i) conversion to grassland with historical drainage and (ii) land use intensification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enrichment of 13C in SOM with soil depth is related to interacting processes influenced by temperature and precipitation. Our objectives were to derive climate effects on patterns of vertical δ13C values of soil organic matter (SOM) while minimizing the effect of confounding variables. We investigated vertical changes in δ13C values of SOM in 1-cm depth intervals in silvicultural mature beech (Fagus sylvatica L.) forest ecosystems in northern Rhineland-Palatinate across gradients of MAT (7.9 to 9.7 °C mean annual temperature) and MAP (607 to 1085 mm mean annual precipitation) in winter 2011. Forest stands (n = 10) were chosen based on data sets provided by the Rhineland-Palatinate Forest Administration so that variations in these gradients occurred while other environmental factors like physico-chemical soil properties, tree species, stand age, exposition and precipitation (for the temperature gradient) or temperature (for the precipitation gradient) did not differ among study sites. From litter down to the mineral soil at 10 cm depth, soil organic carbon (SOC) content decreased (47.5 ± SE 0.1% to 2.5 ± 0.1%) while the δ13C values increased (− 29.4 ± 0.1‰ to − 26.1 ± 0.1‰). Litter of sites under higher MAP/lower MAT had lower δ13C values which was in line with literature data on climate driven plant physiological process. To compare the dimension of the vertical 13C enrichment, δ13C values were regressed linearly against log-transformed carbon contents yielding absolute values of these slopes (beta). Beta values ranged between 0.6 and 4.5 (range of r from − 0.7 to − 1.0; p < 0.01). Due to an assumed decay continuum and similar variations of δ13C values in litter and in 10 cm depth, we conclude that effects on isotope composition in the Oi layer continue vertically and therefore, δ13C values in litter do not solely control beta values. Beta values decreased with increasing MAT (r = − 0.83; p < 0.05). Reduced soil moisture and therefore both, reduced microbial activity and reduced downward transport of microbial cycled DOM (=13C enriched) might be responsible for less pronounced δ13C depth profiles in case of high temperatures. Greater C:N ratios (lower degradability) of the litter under higher temperatures likely contributed to these depth trends. Beta values increased with increasing MAP (r = 0.73; p < 0.05). We found decreasing C:N ratios in the mineral soil that possibly indicates higher decomposition under higher precipitation. Exclusion of the organic layers from linear regressions indicated a stronger impact of MAP on the development of δ13C depth profiles. Our results confirm temperature and precipitation effects on δ13C depth profiles and indicate stronger 13C enrichment under lower MAT/higher MAP. Therefore, time series of vertical δ13C depth profiles might provide insights into climate change effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past and future forest composition and distribution in temperate mountain ranges is strongly influenced by temperature and snowpack. We used LANDCLIM, a spatially explicit, dynamic vegetation model, to simulate forest dynamics for the last 16,000 years and compared the simulation results to pollen and macrofossil records at five sites on the Olympic Peninsula (Washington, USA). To address the hydrological effects of climate-driven variations in snowpack on simulated forest dynamics, we added a simple snow accumulation-and-melt module to the vegetation model and compared simulations with and without the module. LANDCLIM produced realistic present-day species composition with respect to elevation and precipitation gradients. Over the last 16,000 years, simulations driven by transient climate data from an atmosphere-ocean general circulation model (AOGCM) and by a chironomid-based temperature reconstruction captured Late-glacial to Late Holocene transitions in forest communities. Overall, the reconstruction-driven vegetation simulations matched observed vegetation changes better than the AOGCM-driven simulations. This study also indicates that forest composition is very sensitive to snowpack-mediated changes in soil moisture. Simulations without the snow module showed a strong effect of snowpack on key bioclimatic variables and species composition at higher elevations. A projected upward shift of the snow line and a decrease in snowpack might lead to drastic changes in mountain forests composition and even a shift to dry meadows due to insufficient moisture availability in shallow alpine soils.