31 resultados para TWISTED CONJUGACY CLASSES
Resumo:
Low-molecular-weight compounds such as jasmonic, abscisic and salicylic acids are commonly thought to be regulators of plant stress responses. However, it is becoming clear that these molecules, often referred to as phytohormones, are only a part of bigger groups of compounds with biological activity. We propose that the concept of "hormone families" may help to better understand plant physiological responses by taking into account not only the alleged main regulators, but also their precursors, conjugates and catabolites. Novel approaches to profile potentially active compounds in plants are discussed.
Resumo:
We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the scheme are: mud(2 GeV)=3.70(17) MeV, ms(2 GeV)=99.6(4.3) MeV and mc(mc)=1.348(46) GeV. We obtain also the quark mass ratios ms/mud=26.66(32) and mc/ms=11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56), leading to mu=2.36(24) MeV and md=5.03(26) MeV.
Resumo:
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous Nf = 2 results and their phenomenological values. Finally, the strategy for extending simulations to Nf = 2+1+1 is outlined.
Resumo:
The study assessed the brain electric mechanisms of light and deep hypnotic conditions in the framework of EEG temporal microstates. Multichannel EEG of healthy volunteers during initial resting, light hypnosis, deep hypnosis, and eventual recovery was analyzed into temporal EEG microstates of four classes. Microstates are defined by the spatial configuration of their potential distribution maps ([Symbol: see text]potential landscapes') on the head surface. Because different potential landscapes must have been generated by different active neural assemblies, it is reasonable to assume that they also incorporate different brain functions. The observed four microstate classes were very similar to the four standard microstate classes A, B, C, D [Koenig, T. et al. Neuroimage, 2002;16: 41-8] and were labeled correspondingly. We expected a progression of microstate characteristics from initial resting to light to deep hypnosis. But, all three microstate parameters (duration, occurrence/second and %time coverage) yielded values for initial resting and final recovery that were between those of the two hypnotic conditions of light and deep hypnosis. Microstates of the classes B and D showed decreased duration, occurrence/second and %time coverage in deep hypnosis compared to light hypnosis; this was contrary to microstates of classes A and C which showed increased values of all three parameters. Reviewing the available information about microstates in other conditions, the changes from resting to light hypnosis in certain respects are reminiscent of changes to meditation states, and changes to deep hypnosis of those in schizophrenic states.
Resumo:
Tai languages are often described as “lacking” a major lexical class “adjectives”; accordingly, they and other area languages are frequently cited as evidence against adjectival universality. This article brings the putative lack under examination, arguing that a more complete distributional analysis reveals a pattern: overlap is highest among semantically peripheral adjectives and verbs and in constructions prototypically associated to both classes crosslinguistically, and lowest among semantically core adjectives and verbs and in constructions prototypically associated to only one or the other class. Rather than “lacking” adjectives, data from Thai thus in fact support functional-typological characterizations of adjectival universality such as those of Givón (1984), Croft (2001), and Dixon (2004). Finally, while data from Thai would fail to falsify an adaptation of Enfield's (2004) Lao lexical class-taxonomy (in which adjectives are treated as a verbal subclass) on its own terms, this article argues that in absence of both universally-applicable criteria for the evaluation of categorial taxonomies crosslinguistically and evidence for the cognitive reality of categorial taxonomies so stipulated, even this more limited sense of a “lack” of adjectives in Thai is less radical a challenge to adjectival universality than has sometimes been supposed.
Resumo:
We present applicative theories of words corresponding to weak, and especially logarithmic, complexity classes. The theories for the logarithmic hierarchy and alternating logarithmic time formalise function algebras with concatenation recursion as main principle. We present two theories for logarithmic space where the first formalises a new two-sorted algebra which is very similar to Cook and Bellantoni's famous two-sorted algebra B for polynomial time [4]. The second theory describes logarithmic space by formalising concatenation- and sharply bounded recursion. All theories contain the predicates WW representing words, and VV representing temporary inaccessible words. They are inspired by Cantini's theories [6] formalising B.
Resumo:
In this contribution, results from Nf = 2 lattice QCD simulations at one lattice spacing using twisted mass fermions with a clover term at the physical pion mass are presented. The mass splitting between charged and neutral pions (including the disconnected contribution) is shown to be around 20(20) MeV. Further, a first measurement using the clover twisted mass action of the average momentum fraction of the pion is given. Finally, an analysis of pseudoscalar meson masses and decay constants is presented involving linear interpolations in strange and charm quark masses. Matching to meson mass ratios allows the calculation of quark mass ratios: ms=ml = 27:63(13), mc=ml = 339:6(2:2) and mc=ms = 12:29(10). From this mass matching the quantities fK = 153:9(7:5) MeV, fD = 219(11) MeV, fDs = 255(12) MeV and MDs = 1894(93) MeV are determined without the application of finite volume or discretization artefact corrections and with errors dominated by a preliminary estimate of the lattice spacing.