54 resultados para TRACERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood-brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore did not influence the onset and severity of the first clinical disease episode. However, expression of claudin-1 did significantly reduce BBB leakiness for both blood borne tracers and endogenous plasma proteins specifically around vessels expressing claudin-1. In addition, mice expressing claudin-1 exhibited a reduced disease burden during the chronic phase of EAE as compared to control littermates. Our study identifies BBB TJs as the critical structure regulating BBB permeability but not immune cell trafficking into CNS during EAE, and indicates BBB dysfunction is a potential key event contributing to disease burden in the chronic phase of EAE. Our observations suggest that stabilizing BBB barrier function by therapeutic targeting of TJs may be beneficial in treating MS, especially when anti-inflammatory treatments have failed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prospectively investigated the potential of positron emission tomography (PET) using the somatostatin receptor (SSTR) analogue ⁶⁸Ga-DOTATATE and 2-deoxy-2[¹⁸F]fluoro-D-glucose (¹⁸F-FDG) in diffuse parenchymal lung disease (DPLD). Twenty-six patients (mean age 68.9 ± 11.0 years) with DPLD were recruited for ⁶⁸Ga-DOTATATE and ¹⁸F-FDG combined PET/high-resolution computed tomography (HRCT) studies. Ten patients had idiopathic pulmonary fibrosis (IPF), 12 patients had nonspecific interstitial pneumonia (NSIP), and 4 patients had other forms of DPLD. Using PET, the pulmonary tracer uptake (maximum standardized uptake value [SUV(max)]) was calculated. The distribution of PET tracer was compared to the distribution of lung parenchymal changes on HRCT. All patients demonstrated increased pulmonary PET signal with ⁶⁸Ga-DOTATATE and ¹⁸F-FDG. The distribution of parenchymal uptake was similar, with both tracers corresponding to the distribution of HRCT changes. The mean SUV(max) was 2.2 ± 0.7 for ⁶⁸Ga-DOTATATE and 2.8 ± 1.0 (t-test, p  =  .018) for ¹⁸F-FDG. The mean ⁶⁸Ga-DOTATATE SUV(max) in IPF patients was 2.5 ± 0.9, whereas it was 2.0 ± 0.7 (p  =  .235) in NSIP patients. The correlation between ⁶⁸Ga-DOTATATE SUV(max) and gas transfer (transfer factor of the lung for carbon monoxide [TLCO]) was r  =  -.34 (p  =  .127) and r  =  -.49 (p  =  .028) between ¹⁸F-FDG SUV(max) and TLCO. We provide noninvasive in vivo evidence in humans showing that SSTRs may be detected in the lungs of patients with DPLD in a similar distribution to sites of increased uptake of ¹⁸F-FDG on PET.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification might reduce the ability of calcifying plankton to produce and maintain their shells of calcite, or of aragonite, the more soluble form of CaCO3. In addition to possibly large biological impacts, reduced CaCO3 production corresponds to a negative feedback on atmospheric CO2. In order to explore the sensitivity of the ocean carbon cycle to increasing concentrations of atmospheric CO2, we use the new biogeochemical Bern3D/PISCES model. The model reproduces the large scale distributions of biogeochemical tracers. With a range of sensitivity studies, we explore the effect of (i) using different parameterizations of CaCO3 production fitted to available laboratory and field experiments, of (ii) letting calcite and aragonite be produced by auto- and heterotrophic plankton groups, and of (iii) using carbon emissions from the range of the most recent IPCC Representative Concentration Pathways (RCP). Under a high-emission scenario, the CaCO3 production of all the model versions decreases from ~1 Pg C yr−1 to between 0.36 and 0.82 Pg C yr−1 by the year 2100. The changes in CaCO3 production and dissolution resulting from ocean acidification provide only a small feedback on atmospheric CO2 of −1 to −11 ppm by the year 2100, despite the wide range of parameterizations, model versions and scenarios included in our study. A potential upper limit of the CO2-calcification/dissolution feedback of −30 ppm by the year 2100 is computed by setting calcification to zero after 2000 in a high 21st century emission scenario. The similarity of feedback estimates yielded by the model version with calcite produced by nanophytoplankton and the one with calcite, respectively aragonite produced by mesozooplankton suggests that expending biogeochemical models to calcifying zooplankton might not be needed to simulate biogeochemical impacts on the marine carbonate cycle. The changes in saturation state confirm previous studies indicating that future anthropogenic CO2 emissions may lead to irreversible changes in ΩA for several centuries. Furthermore, due to the long-term changes in the deep ocean, the ratio of open water CaCO3 dissolution to production stabilizes by the year 2500 at a value that is 30–50% higher than at pre-industrial times when carbon emissions are set to zero after 2100.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants, has brought argillaceous formations into focus as potential host rocks for the geological disposal of radioactive and other waste. In several countries, programmes are under way to characterise the detailed transport properties of such formations at depth. In this context, the interpretation of profiles of natural tracers in pore waters across the formations can give valuable information about the large-scale and long-term transport behaviour of these formations. Here, tracer-profile data, obtained by various methods of pore-water extraction for nine sites in central Europe, are compiled. Data at each site comprise some or all of the conservative tracers: anions (Cl(-), Br(-)), water isotopes (delta(18)O, delta(2)H) and noble gases (mainly He). Based on a careful evaluation of the palaeo-hydrogeological evolution at each site, model scenarios are derived for initial and boundary pore-water compositions and an attempt is made to numerically reproduce the observed tracer distributions in a consistent way for all tracers and sites, using transport parameters derived from laboratory or in situ tests. The comprehensive results from this project have been reported in Mazurek et al. (2009). Here the results for three sites are presented in detail, but the conclusions are based on model interpretations of the entire data set. In essentially all cases, the shapes of the profiles can be explained by diffusion acting as the dominant transport process over periods of several thousands to several millions of years and at the length scales of the profiles. Transport by advection has a negligible influence on the observed profiles at most sites, as can be shown by estimating the maximum advection velocities that still give acceptable fits of the model with the data. The advantages and disadvantages of different conservative tracers are also assessed. The anion Cl(-) is well suited as a natural tracer in aquitards, because its concentration varies considerably in environmental waters. It can easily be measured, although the uncertainty regarding the fraction of the pore space that is accessible to anions in clays remains an issue. The stable water isotopes are also well suited, but they are more difficult to measure and their values generally exhibit a smaller relative range of variation. Chlorine isotopes (delta(37)Cl) and He are more difficult to interpret because initial and boundary conditions cannot easily be constrained by independent evidence. It is also shown that the existence of perturbing events such as the activation of aquifers due to uplift and erosion, leading to relatively sharp changes of boundary conditions, can be considered as a pre-requisite to obtain well-interpretable tracer signatures. On the other hand, gradual changes of boundary conditions are more difficult to parameterise and so may preclude a clear interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chelated somatostatin agonists have been shown to be sensitive to N-terminal radiometal modifications, with Ga-DOTA agonists having significantly higher binding affinity than their Lu-, In-, and Y-DOTA correlates. Recently, somatostatin antagonists have been successfully developed as alternative tracers to agonists. The aim of this study was to evaluate whether chelated somatostatin antagonists are also sensitive to radiometal modifications and how. We have synthesized 3 different somatostatin antagonists, DOTA-p-NO(2)-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2) (DOTA-JR11), and DOTA-p-Cl-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), and added various radiometals including In(III), Y(III), Lu(III), Cu(II), and Ga(III). We also replaced DOTA with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and added Ga(III). The binding affinity of somatostatin receptors 1 through 5 was evaluated in all cases. In all 3 resulting antagonists, the Ga-DOTA analogs were the lowest-affinity radioligands, with a somatostatin receptor 2 binding affinity up to 60 times lower than the respective Y-DOTA, Lu-DOTA, or In-DOTA compounds. Interestingly, however, substitution of DOTA by the NODAGA chelator was able to increase massively its binding affinity in contrast to the Ga-DOTA analog. The 3 NODAGA analogs are antagonists in functional tests. In vivo biodistribution studies comparing (68)Ga-DOTATATE agonist with (68)Ga-DOTA-JR11 and (68)Ga-NODAGA-JR11 showed not only that the JR11 antagonist radioligands were superior to the agonist ligands but also that (68)Ga-NODAGA-JR11 was the tracer of choice and preferable to (68)Ga-DOTA-JR11 in transplantable HEK293-hsst(2) tumors in mice. One may therefore generalize that somatostatin receptor 2 antagonists are sensitive to radiometal modifications and may preferably be coupled with a (68)Ga-NODAGA chelator-radiometal complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of metal chelators is becoming increasingly important in the development of new tracers for molecular imaging. With the rise of the field of nanotechnology, the fusion of both technologies has shown great potential for clinical applications. The pharmacokinetcs of nanoparticles can be monitored via positron emission tomography (PET) after surface modification and radiolabeling with positron emitting radionuclides. Different metal ion chelators can be used to facilitate labeling of the radionuclides and as a prerequisite, optimized radiolabeling procedure is necessary to prevent nanoparticle aggregation and degradation. However, the effects of chelator modification on nanoparticle pharmacokinetic properties have not been well studied and currently no studies to date have compared the biological effects of the use of different chelators in the surface modification of nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CRF has powerful receptor-mediated cardiovascular actions. To evaluate the precise distribution of CRF receptors, in vitro CRF receptor autoradiography with (125)I-[Tyr(0), Glu(1), Nle(17)]-sauvagine or [(125)I]-antisauvagine-30 was performed in the rodent and human cardiovascular system. An extremely high density of CRF(2) receptors was detected with both tracers in vessels of rodent lung, intestine, pancreas, mesenterium, kidney, urinary bladder, testis, heart, brain, and in heart muscle. In humans, CRF(2) receptors were detected with (125)I- antisauvagine-30 at low levels in vessels of kidneys, intestine, urinary bladder, testis, heart and in heart muscle, while only heart vessels were detected with (125)I-[Tyr(0), Glu(1), Nle(17)]-sauvagine. This is the first extensive morphological study reporting the extremely wide distribution of CRF(2) receptors in the rodent cardiovascular system and a more limited expression in man, suggesting a species-selective CRF receptor expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptors for regulatory peptides are overexpressed in a variety of human cancers. They represent the molecular basis for in vivo imaging with radiolabeled peptide probes. Somatostatin-derived tracers, designed to image the sst2-overexpressing neuroendocrine tumors, have enjoyed almost 2 decades of successful development and extensive clinical applications. More recent developments include second- and third-generation somatostatin analogs, with a broader receptor subtype profile or with antagonistic properties. Emerging tracers for other peptide receptors, including cholecystokinin/gastrin and GLP-1 analogs for neuroendocrine tumors, bombesin and neuropeptide-Y analogs for prostate or breast cancers, or Arg-Gly-Asp peptides for neoangiogenesis labeling, are also in current development. Application fields include both SPECT/CT and PET/CT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the meltwater can be drained by underlying karst systems, making it difficult to assess water availability. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland) and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, geologic information and the findings from tracer experiments were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier meltwater is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season meltwater enters into the karst and is drained to the south. Climate change projections with the glacier melt model reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatostatin receptor PET tracers such as [68Ga-DOTA,1-Nal3]-octreotide (68Ga-DOTANOC) and [68Ga-DOTA,Tyr3]-octreotate (68Ga-DOTATATE) have shown promising results in patients with neuroendocrine tumors, with a higher lesion detection rate than is achieved with 18F-fluorodihydroxyphenyl-l-alanine PET, somatostatin receptor SPECT, CT, or MR imaging. 68Ga-DOTANOC has high affinity for somatostatin receptor subtypes 2, 3, and 5 (sst2,3,5). It has a wider receptor binding profile than 68Ga-DOTATATE, which is sst2-selective. The wider receptor binding profile might be advantageous for imaging because neuroendocrine tumors express different subtypes of somatostatin receptors. The goal of this study was to prospectively compare 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT in the same patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and to evaluate the clinical impact of 68Ga-DOTANOC PET/CT. Methods: Eighteen patients with biopsy-proven GEP-NETs were evaluated with 68Ga-DOTANOC and 68Ga-DOTATATE using a randomized crossover design. Labeling of DOTANOC and DOTATATE with 68Ga was standardized using a fully automated synthesis device. PET/CT findings were compared with 3-phase CT scans and in some patients with MR imaging, 18F-FDG PET/CT, and histology. Uptake in organs and tumor lesions was quantified and compared by calculation of maximum standardized uptake values (SUVmax) using volume computer-assisted reading. Results: Histology revealed low-grade GEP-NETs (G1) in 4 patients, intermediate grade (G2) in 7, and high grade (G3) in 7. 68Ga-DOTANOC and 68Ga-DOTATATE were false-negative in only 1 of 18 patients. In total, 248 lesions were confirmed by cross-sectional and PET imaging. The lesion-based sensitivity of 68Ga-DOTANOC PET was 93.5%, compared with 85.5% for 68Ga-DOTATATE PET (P = 0.005). The better performance of 68Ga-DOTANOC PET is attributed mainly to the significantly higher detection rate of liver metastases rather than tumor differentiation grade. Multivariate analysis revealed significantly higher SUVmax in G1 tumors than in G3 tumors (P = 0.009). This finding was less pronounced with 68Ga-DOTANOC (P > 0.001). Altogether, 68Ga-DOTANOC changed treatment in 3 of 18 patients (17%). Conclusion: The sst2,3,5-specific radiotracer 68Ga-DOTANOC detected significantly more lesions than the sst2-specific radiotracer 68Ga-DOTATATE in our patients with GEP-NETs. The clinical relevance of this finding has to be proven in larger studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The city of Bath is a World Heritage site and its thermal waters, the Roman Baths and new spa development rely on undisturbed flow of the springs (45 °C). The current investigations provide an improved understanding of the residence times and flow regime as basis for the source protection. Trace gas indicators including the noble gases (helium, neon, argon, krypton and xenon) and chlorofluorocarbons (CFCs), together with a more comprehensive examination of chemical and stable isotope tracers are used to characterise the sources of the thermal water and any modern components. It is shown conclusively by the use of 39Ar that the bulk of the thermal water has been in circulation within the Carboniferous Limestone for at least 1000 years. Other stable isotope and noble gas measurements confirm previous findings and strongly suggest recharge within the Holocene time period (i.e. the last 12 kyr). Measurements of dissolved 85Kr and chlorofluorocarbons constrain previous indications from tritium that a small proportion (<5%) of the thermal water originates from modern leakage into the spring pipe passing through Mesozoic valley fill underlying Bath. This introduces small amounts of O2 into the system, resulting in the Fe precipitation seen in the King’s Spring. Silica geothermometry indicates that the water is likely to have reached a maximum temperature of between 69–99 °C, indicating a most probable maximum circulation depth of ∼3 km, which is in line with recent geological models. The rise to the surface of the water is sufficiently indirect that a temperature loss of >20 °C is incurred. There is overwhelming evidence that the water has evolved within the Carboniferous Limestone formation, although the chemistry alone cannot pinpoint the geometry of the recharge area or circulation route. For a likely residence time of 1–12 kyr, volumetric calculations imply a large storage volume and circulation pathway if typical porosities of the limestone at depth are used, indicating that much of the Bath-Bristol basin must be involved in the water storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-conducting faults and fractures were studied in the granite-hosted A¨ spo¨ Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours–days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption Kds are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the results from detailed structural and petrological characterisation and on up-scaled laboratory values for sorption and diffusion, blind predictions were made for the STT1 dipole tracer test performed in the Swedish A¨ spo¨ Hard Rock Laboratory. The tracers used were nonsorbing, such as uranine and tritiated water, weakly sorbing 22Na+, 85Sr2 +, 47Ca2 +and more strongly sorbing 86Rb+, 133Ba2 +, 137Cs+. Our model consists of two parts: (1) a flow part based on a 2D-streamtube formalism accounting for the natural background flow field and with an underlying homogeneous and isotropic transmissivity field and (2) a transport part in terms of the dual porosity medium approach which is linked to the flow part by the flow porosity. The calibration of the model was done using the data from one single uranine breakthrough (PDT3). The study clearly showed that matrix diffusion into a highly porous material, fault gouge, had to be included in our model evidenced by the characteristic shape of the breakthrough curve and in line with geological observations. After the disclosure of the measurements, it turned out that, in spite of the simplicity of our model, the prediction for the nonsorbing and weakly sorbing tracers was fairly good. The blind prediction for the more strongly sorbing tracers was in general less accurate. The reason for the good predictions is deemed to be the result of the choice of a model structure strongly based on geological observation. The breakthrough curves were inversely modelled to determine in situ values for the transport parameters and to draw consequences on the model structure applied. For good fits, only one additional fracture family in contact with cataclasite had to be taken into account, but no new transport mechanisms had to be invoked. The in situ values for the effective diffusion coefficient for fault gouge are a factor of 2–15 larger than the laboratory data. For cataclasite, both data sets have values comparable to laboratory data. The extracted Kd values for the weakly sorbing tracers are larger than Swedish laboratory data by a factor of 25–60, but agree within a factor of 3–5 for the more strongly sorbing nuclides. The reason for the inconsistency concerning Kds is the use of fresh granite in the laboratory studies, whereas tracers in the field experiments interact only with fracture fault gouge and to a lesser extent with cataclasite both being mineralogically very different (e.g. clay-bearing) from the intact wall rock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Claystones are considered worldwide as barrier materials for nuclear waste repositories. In the Mont Terri underground research laboratory (URL), a nearly 4-year diffusion and retention (DR) experiment has been performed in Opalinus Clay. It aimed at (1) obtaining data at larger space and time scales than in laboratory experiments and (2) under relevant in situ conditions with respect to pore water chemistry and mechanical stress, (3) quantifying the anisotropy of in situ diffusion, and (4) exploring possible effects of a borehole-disturbed zone. The experiment included two tracer injection intervals in a borehole perpendicular to bedding, through which traced artificial pore water (APW) was circulated, and a pressure monitoring interval. The APW was spiked with neutral tracers (HTO, HDO, H2O-18), anions (Br, I, SeO4), and cations (Na-22, Ba-133, Sr-85, Cs-137, Co-60, Eu-152, stable Cs, and stable Eu). Most tracers were added at the beginning, some were added at a later stage. The hydraulic pressure in the injection intervals was adjusted according to the measured value in the pressure monitoring interval to ensure transport by diffusion only. Concentration time-series in the APW within the borehole intervals were obtained, as well as 2D concentration distributions in the rock at the end of the experiment after overcoring and subsampling which resulted in �250 samples and �1300 analyses. As expected, HTO diffused the furthest into the rock, followed by the anions (Br, I, SeO4) and by the cationic sorbing tracers (Na-22, Ba-133, Cs, Cs-137, Co-60, Eu-152). The diffusion of SeO4 was slower than that of Br or I, approximately proportional to the ratio of their diffusion coefficients in water. Ba-133 diffused only into �0.1 m during the �4 a. Stable Cs, added at a higher concentration than Cs-137, diffused further into the rock than Cs-137, consistent with a non-linear sorption behavior. The rock properties (e.g., water contents) were rather homogeneous at the centimeter scale, with no evidence of a borehole-disturbed zone. In situ anisotropy ratios for diffusion, derived for the first time directly from field data, are larger for HTO and Na-22 (�5) than for anions (�3�4 for Br and I). The lower ionic strength of the pore water at this location (�0.22 M) as compared to locations of earlier experiments in the Mont Terri URL (�0.39 M) had no notable effect on the anion accessible pore fraction for Cl, Br, and I: the value of 0.55 is within the range of earlier data. Detailed transport simulations involving different codes will be presented in a companion paper.