41 resultados para TRABECULAR SHEAR-STRESS
Resumo:
AIM: Suppression of erythropoiesis due to low plasma erythropoietin levels is an important factor in the development of anaemia of prematurity. Premature infants may therefore be treated with recombinant human erythropoietin (rhEPO). This prospective, randomised and controlled study was designed to find out whether rhEPO treatment improves erythrocyte deformability in preterm infants. METHODS: Sixteen infants were treated with rhEPO (250 IU/kg three times weekly) a total of 15 times beginning on day of life 5 whereas fifteen infants served as controls. Haemoglobin concentration, haematocrit, reticulocyte count, ferritin level and erythrocyte deformability were measured on days 5, 14, 28, 42 and 63. Erythrocyte elongation was determined as an indicator of erythrocyte deformability using a shear stress diffractometer (Rheodyn SSD) at shear forces of 0.3 to 60 Pa. RESULTS: Haemoglobin concentration was significantly higher on days 28 and 42 and reticulocyte percentage on day 28 in the rhEPO group compared to the controls. Serum ferritin was lower in the rhEPO group on day 28. Erythrocyte deformability was significantly increased on days 28 and 42 in the infants receiving rhEPO. We found a strong relationship between erythrocyte elongation and reticulocyte count. CONCLUSION: RhEPO markedly increases the erythropoiesis in preterm infants in the critical first weeks of life and the anaemia of prematurity is obviously reduced. The erythrocyte deformability improved under rhEPO treatment. Erythrocyte deformability was significantly related to the reticulocyte count indicating that the improvement of erythrocyte deformability was due to the formation of well-deformable young erythrocytes.
Resumo:
INTRODUCTION: Peripheral arterial disease (PAD) is associated with systemic impaired flow-mediated dilation (FMD) and increased risk for cardiovascular events. Decreased FMD may be caused by a decrease in arterial shear stress due to claudication and inflammation due to muscle ischemia and reperfusion. We assumed that endovascular revascularization of lower limb arterial obstructions ameliorates FMD and lowers inflammation through improvement of peripheral perfusion. METHODS: The study was a prospective, open, randomized, controlled, single-center follow-up evaluation assessing the effect of endovascular revascularization on brachial artery reactivity (FMD) measured by ultrasound, white blood cell (WBC) count, high-sensitive C-reactive protein (hs-CRP), and fibrinogen. We investigated 33 patients (23 men) with chronic and stable PAD (Rutherford 2 to 3) due to femoropopliteal obstruction. Variables were assessed at baseline and after 4 weeks in 17 patients (group A) who underwent endovascular revascularization and best medical treatment, and in 16 patients (group B) who received best medical treatment only. RESULTS: FMD did not differ between group A and B (4.96% +/- 1.86% vs 4.60% +/- 2.95%; P = .87) at baseline. It significantly improved after revascularization in group A (6.44% +/- 2.88%; P = .02) compared with group B at 4 weeks of follow-up (4.53% +/- 3.17%; P = .92), where it remained unchanged. The baseline ankle-brachial index (ABI) was similar for group A and B (0.63 +/- 0.15 vs 0.66 +/- 0.10; P = .36). At 4 weeks of follow-up, ABI was significantly increased in group A (1.05 +/- 0.15; P = .0004) but remained unchanged in group B (0.62 +/- 0.1). WBC counts of the two groups were comparable at baseline (group A: 7.6 +/- 2.26 x 10(6)/mL and group B: 7.8 +/- 2.02 x 10(6)/mL, P = .81). In group A, the leukocyte count significantly decreased after angioplasty from 7.6 +/- 2.26 to 6.89 +/- 1.35 x 10(6)/mL (P = .03). For group B, WBC count did not differ significantly compared with baseline (7.76 +/- 2.64 x 10(6)/mL; P = .94). No effects were observed on hs-CRP or fibrinogen from endovascular therapy. CONCLUSION: Endovascular revascularization with reestablishment of peripheral arterial perfusion improves FMD and reduces WBC count in patients with claudication. Revascularization may therefore have clinical implications beyond relief of symptoms, for example, reducing oxidative stress caused by repeated muscle ischemia or increased shear stress due to improved ambulatory activity.
Resumo:
The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.
Resumo:
OBJECTIVE: The purpose of this study was to compare a standard peripheral end-hole angiocatheter with those modified with side holes or side slits using experimental optical techniques to qualitatively compare the contrast material exit jets and using numeric techniques to provide flow visualization and quantitative comparisons. MATERIALS AND METHODS: A Schlieren imaging system was used to visualize the angiocatheter exit jet fluid dynamics at two different flow rates. Catheters were modified by drilling through-and-through side holes or by cutting slits into the catheters. A commercial computational fluid dynamics package was used to calculate numeric results for various vessel diameters and catheter orientations. RESULTS: Experimental images showed that modifying standard peripheral IV angiocatheters with side holes or side slits qualitatively changed the overall flow field and caused the exiting jet to become less well defined. Numeric calculations showed that the addition of side holes or slits resulted in a 9-30% reduction of the velocity of contrast material exiting the end hole of the angiocatheter. With the catheter tip directed obliquely to the wall, the maximum wall shear stress was always highest for the unmodified catheter and was always lowest for the four-side-slit catheter. CONCLUSION: Modified angiocatheters may have the potential to reduce extravasation events in patients by reducing vessel wall shear stress.
Resumo:
RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236) in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236) show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236) by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.
Resumo:
Modern mixed alluvial-bedrock channels in mountainous areas provide natural laboratories for understanding the time scales at which coarse-grained material has been entrained and transported from their sources to the adjacent sedimentary sink, where these deposits are preserved as conglomerates. This article assesses the shear stress conditions needed for the entrainment of the coarse-bed particles in the Glogn River that drains the 400 km2 Val Lumnezia basin, eastern Swiss Alps. In addition, quantitative data are presented on sediment transport patterns in this stream. The longitudinal stream profile of this river is characterized by three ca 500 m long knickzones where channel gradients range from 0·02 to 0·2 m m−1, and where the valley bottom confined into a <10 m wide gorge. Downstream of these knickzones, the stream is flat with gradients <0·01 m m−1 and widths ≥30 m. Measurements of the grain-size distribution along the trunk stream yield a mean D84 value of ca 270 mm, whereas the mean D50 is ca 100 mm. The consequences of the channel morphology and the grain-size distribution for the time scales of sediment transport were explored by using a one-dimensional step-backwater hydraulic model (Hydrologic Engineering Centre – River Analysis System). The results reveal that, along the entire trunk stream, a two to 10 year return period flood event is capable of mobilizing both the D50 and D84 fractions where the Shields stress exceeds the critical Shields stress for the initiation of particle motion. These return periods, however, varied substantially depending on the channel geometry and the pebble/boulder size distribution of the supplied material. Accordingly, the stream exhibits a highly dynamic boulder cover behaviour. It is likely that these time scales might also have been at work when coarse-grained conglomerates were constructed in the geological past.
Resumo:
Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow.
Resumo:
Because neuronal nitric oxide synthase (nNOS) has a well-known impact on arteriolar blood flow in skeletal muscle, we compared the ultrastructure and the hemodynamics of/in the ensuing capillaries in the extensor digitorum longus (EDL) muscle of male nNOS-knockout (KO) mice and wild-type (WT) littermates. The capillary-to-fiber (C/F) ratio (-9.1%) was lower (P ≤ 0.05) in the nNOS-KO mice than in the WT mice, whereas the mean cross-sectional fiber area (-7.8%) and the capillary density (-3.1%) varied only nonsignificantly (P > 0.05). Morphometrical estimation of the area occupied by the capillaries as well as the volume and surface densities of the subcellular compartments differed nonsignificantly (P > 0.05) between the two strains. Intravital microscopy revealed neither the capillary diameter (+3% in nNOS-KO mice vs. WT mice) nor the mean velocity of red blood cells in EDL muscle (+25% in nNOS-KO mice vs. WT mice) to significantly vary (P > 0.05) between the two strains. The calculated shear stress in the capillaries was likewise nonsignificantly different (3.8 ± 2.2 dyn/cm² in nNOS-KO mice and 2.1 ± 2.2 dyn/cm² in WT mice; P > 0.05). The mRNA levels of vascular endothelial growth factor (VEGF)-A were lower in the EDL muscle of nNOS-KO mice than in the WT littermates (-37%; P ≤ 0.05), whereas mRNA levels of VEGF receptor-2 (VEGFR-2) (-11%), hypoxia inducible factor-1α (+9%), fibroblast growth factor-2 (-14%), and thrombospondin-1 (-10%) differed nonsignificantly (P > 0.05). Our findings support the contention that VEGF-A mRNA expression and C/F-ratio but not the ultrastructure or the hemodynamics of/in capillaries in skeletal muscle at basal conditions depend on the expression of nNOS.
Resumo:
BACKGROUND Aortic dissection is a severe pathological condition in which blood penetrates between layers of the aortic wall and creates a duplicate channel - the false lumen. This considerable change on the aortic morphology alters hemodynamic features dramatically and, in the case of rupture, induces markedly high rates of morbidity and mortality. METHODS In this study, we establish a patient-specific computational model and simulate the pulsatile blood flow within the dissected aorta. The k-ω SST turbulence model is employed to represent the flow and finite volume method is applied for numerical solutions. Our emphasis is on flow exchange between true and false lumen during the cardiac cycle and on quantifying the flow across specific passages. Loading distributions including pressure and wall shear stress have also been investigated and results of direct simulations are compared with solutions employing appropriate turbulence models. RESULTS Our results indicate that (i) high velocities occur at the periphery of the entries; (ii) for the case studied, approximately 40% of the blood flow passes the false lumen during a heartbeat cycle; (iii) higher pressures are found at the outer wall of the dissection, which may induce further dilation of the pseudo-lumen; (iv) highest wall shear stresses occur around the entries, perhaps indicating the vulnerability of this region to further splitting; and (v) laminar simulations with adequately fine mesh resolutions, especially refined near the walls, can capture similar flow patterns to the (coarser mesh) turbulent results, although the absolute magnitudes computed are in general smaller. CONCLUSIONS The patient-specific model of aortic dissection provides detailed flow information of blood transport within the true and false lumen and quantifies the loading distributions over the aorta and dissection walls. This contributes to evaluating potential thrombotic behavior in the false lumen and is pivotal in guiding endovascular intervention. Moreover, as a computational study, mesh requirements to successfully evaluate the hemodynamic parameters have been proposed.
Resumo:
Conservative medical treatment is commonly first recommended for patients with uncomplicated Type-B aortic dissection (AD). However, if dissection-related complications occur, endovascular repair or open surgery is performed. Here we establish computational models of AD based on radiological three-dimensional images of a patient at initial presentation and after 4-years of best medical treatment (BMT). Computational fluid dynamics analyses are performed to quantitatively investigate the hemodynamic features of AD. Entry and re-entries (functioning as entries and outlets) are identified in the initial and follow-up models, and obvious variations of the inter-luminal flow exchange are revealed. Computational studies indicate that the reduction of blood pressure in BMT patients lowers pressure and wall shear stress in the thoracic aorta in general, and flattens the pressure distribution on the outer wall of the dissection, potentially reducing the progressive enlargement of the false lumen. Finally, scenario studies of endovascular aortic repair are conducted. The results indicate that, for patients with multiple tears, stent-grafts occluding all re-entries would be required to effectively reduce inter-luminal blood communication and thus induce thrombosis in the false lumen. This implicates that computational flow analyses may identify entries and relevant re-entries between true and false lumen and potentially assist in stent-graft planning.
Resumo:
BACKGROUND Medial open wedge high tibial osteotomy is a well-established procedure for the treatment of unicompartmental osteoarthritis and symptomatic varus malalignment. We hypothesized that different fixation devices generate different fixation stability profiles for the various wedge sizes in a finite element (FE) analysis. METHODS Four types of fixation were compared: 1) first and 2) second generation Puddu plates, and 3) TomoFix plate with and 4) without bone graft. Cortical and cancellous bone was modelled and five different opening wedge sizes were studied for each model. Outcome measures included: 1) stresses in bone, 2) relative displacement of the proximal and distal tibial fragments, 3) stresses in the plates, 4) stresses on the upper and lower screw surfaces in the screw channels. RESULTS The highest load for all fixation types occurred in the plate axis. For the vast majority of the wedge sizes and fixation types the shear stress (von Mises stress) was dominating in the bone independent of fixation type. The relative displacements of the tibial fragments were low (in μm range). With an increasing wedge size this displacement tended to increase for both Puddu plates and the TomoFix plate with bone graft. For the TomoFix plate without bone graft a rather opposite trend was observed.For all fixation types the occurring stresses at the screw-bone contact areas pulled at the screws and exceeded the allowable threshold of 1.2 MPa for at least one screw surface. Of the six screw surfaces that were studied, the TomoFix plate with bone graft showed a stress excess of one out of twelve and without bone graft, five out of twelve. With the Puddu plates, an excess stress occurred in the majority of screw surfaces. CONCLUSIONS The different fixation devices generate different fixation stability profiles for different opening wedge sizes. Based on the computational simulations, none of the studied osteosynthesis fixation types warranted an intransigent full weight bearing per se. The highest fixation stability was observed for the TomoFix plates and the lowest for the first generation Puddu plate. These findings were revealed in theoretical models and need to be validated in controlled clinical settings.
Resumo:
PURPOSE To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. BASIC METHODS Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. PRINCIPAL FINDINGS Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03-5.46 Pa vs. eversion carotid endarterectomy: 0.12-5.22 Pa). CONCLUSIONS Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques.
Resumo:
OBJECTIVE We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. MATERIALS AND METHODS k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). RESULTS Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). CONCLUSION k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.
Resumo:
Nitinol stent oversizing is frequently performed in peripheral arteries to ensure a desirable lumen gain. However, the clinical effect of mis-sizing remains controversial. The goal of this study was to provide a better understanding of the structural and hemodynamic effects of Nitinol stent oversizing. Five patient-specific numerical models of non-calcified popliteal arteries were developed to simulate the deployment of Nitinol stents with oversizing ratios ranging from 1.1 to 1.8. In addition to arterial biomechanics, computational fluid dynamics methods were adopted to simulate the physiological blood flow inside the stented arteries. Results showed that stent oversizing led to a limited increase in the acute lumen gain, albeit at the cost of a significant increase in arterial wall stresses. Furthermore, localized areas affected by low Wall Shear Stress increased with higher oversizing ratios. Stents were also negatively impacted by the procedure as their fatigue safety factors gradually decreased with oversizing. These adverse effects to both the artery walls and stents may create circumstances for restenosis. Although the ideal oversizing ratio is stent-specific, this study showed that Nitinol stent oversizing has a very small impact on the immediate lumen gain, which contradicts the clinical motivations of the procedure.
Resumo:
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.