52 resultados para THIOREDOXIN-BINDING PROTEIN-2
Resumo:
BACKGROUND The early diagnosis of acute myocardial infarction (AMI) very soon after symptom onset remains a major clinical challenge, even when using high-sensitivity cardiac troponin (hs-cTnT). METHODS AND RESULTS We investigated the incremental value of heart-type fatty acid-binding protein (hFABP) in a pre-specified subgroup analysis of patients presenting with suspected AMI within 1 h of symptom onset to the emergency department (ED) in a multicentre study. HFABP was measured in a blinded fashion. Two independent cardiologists using all available clinical information, including hs-cTnT, adjudicated the final diagnosis. Overall, 1411 patients were enrolled, of whom 105 patients presented within 1 h of symptom onset. Of these, 34 patients (32.4%) had AMI. The diagnostic accuracy as quantified by the area under the receiver-operating characteristics curve (AUC) of hFABP was high (0.84 (95% CI 0.74-0.94)). However, the additional use of hFABP only marginally increased the diagnostic accuracy of hs-cTnT (AUC 0.88 (95% CI 0.81-0.94) for hs-cTnT alone to 0.90 (95% CI 0.83-0.98) for the combination; p=ns). After the exclusion of 18 AMI patients with ST-segment elevation, similar results were obtained. Among the 16 AMI patients without ST-segment elevation, six had normal hs-cTnT at presentation. Of these, hFABP was elevated in two (33.3%) patients. CONCLUSIONS hFABP does not seem to significantly improve the early diagnostic accuracy of hs-cTnT in the important subgroup of patients with suspected AMI presenting to the ED very early after symptom onset.
Resumo:
Inflammatory bowel diseases (IBDs), Crohn's disease, and ulcerative colitis (UC), are multifactorial disorders, characterized by chronic inflammation of the intestine. A number of genetic components have been proposed to contribute to IBD pathogenesis. In this case-control study, we investigated the association between two common vitamin D-binding protein (DBP) genetic variants and IBD susceptibility. These two single nucleotide polymorphisms (SNPs) in exon 11 of the DBP gene, at codons 416 (GAT>GAG; Asp>Glu) and 420 (ACG>AAG; Thr>Lys), have been previously suggested to play roles in the etiology of other autoimmune diseases.
Resumo:
A number of mathematical models for predicting growth and final height outcome have been proposed to enable the clinician to 'individualize' growth-promoting treatment. However, despite optimizing these models, many patients with isolated growth hormone deficiency (IGHD) do not reach their target height. The aim of this study was to analyse the impact of polymorphic genotypes [CA repeat promoter polymorphism of insulin-like growth factor-I (IGF-I) and the -202 A/C promoter polymorphism of IGF-Binding Protein-3 (IGFBP-3)] on variable growth factors as well as final height in severe IGHD following GH treatment. DESIGN, PATIENTS AND CONTROLS: One hundred seventy eight (IGF-I) and 167 (IGFBP-3) subjects with severe growth retardation because of IGHD were studied. In addition, the various genotypes were also studied in a healthy control group of 211 subjects.
Resumo:
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Resumo:
Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.
Resumo:
The aim of this study was to investigate differences in concentrations of vitamin A, transthyretin (TTR) and retinol-binding protein (RBP) between plasma and cerebrospinal fluid (CSF) in dogs. RBP was detected using ELISA, and both RBP and TTR by Western blot analysis after separation on SDS-PAGE. Vitamin A was determined by high performance liquid chromatography. RBP and TTR as well as vitamin A were detected in all samples but at substantially lower concentrations in CSF compared to plasma. RBP in dog plasma showed a similar molecular mass to that of humans, whereas canine TTR had a lower molecular mass. Comparison between plasma and CSF showed that both RBP and TTR were of lower molecular mass in CSF. In CSF, RBP and retinol were present at 10-100-fold lower concentrations compared to plasma. Retinyl esters were present only in minute amounts in 5/17 samples. In conclusion, the CSF of dogs compared to humans is significantly different in terms of both quality and quantity of transport proteins for vitamin A.
Resumo:
Cancer cells acquire drug resistance as a result of selection pressure dictated by unfavorable microenvironments. This survival process is facilitated through efficient control of oxidative stress originating from mitochondria that typically initiates programmed cell death. We show this critical adaptive response in cancer cells to be linked to uncoupling protein-2 (UCP2), a mitochondrial suppressor of reactive oxygen species (ROS). UCP2 is present in drug-resistant lines of various cancer cells and in human colon cancer. Overexpression of UCP2 in HCT116 human colon cancer cells inhibits ROS accumulation and apoptosis after exposure to chemotherapeutic agents. Tumor xenografts of UCP2-overexpressing HCT116 cells retain growth in nude mice receiving chemotherapy. Augmented cancer cell survival is accompanied by altered NH(2)-terminal phosphorylation of the pivotal tumor suppressor p53 and induction of the glycolytic phenotype (Warburg effect). These findings link UCP2 with molecular mechanisms of chemoresistance. Targeting UCP2 may be considered a novel treatment strategy for cancer.
Resumo:
OBJECTIVES: To report a novel observation of neutrophil signal transduction abnormalities in patients with localized aggressive periodontitis (LAP) that are associated with an enhanced phosphorylation of the nuclear signal transduction protein cyclic AMP response element-binding factor (CREB). METHOD AND MATERIALS: Peripheral venous blood neutrophils of 18 subjects, 9 patients with LAP and 9 race-, sex-, and age-matched healthy controls, were isolated and prepared using the Ficoll-Hypaque density-gradient technique. Neutrophils (5.4 x 10(6)/mL) were stimulated with the chemoattractant FMLP (10(-6) mol/L) for 5 minutes and lysed. Aliquots of these samples were separated by SDS-PAGE (60 microg/lane) on 9.0% (w/v) polyacrylamide slab gels and transferred electrophoretically to polyvinyl difluoride membranes. The cell lysates were immunoblotted with a 1:1,000 dilution of rabbit-phospho-CREB antibody that recognizes only the phosphorylated form of CREB at Ser133. The activated CREB was visualized with a luminol-enhanced chemoluminescence detection system and evaluated by laser densitometry. RESULTS: In patients with LAP, the average activation of CREB displayed an overexpression for the unstimulated peripheral blood neutrophils of 80.3% (17.5-fold) compared to healthy controls (4.6%). CONCLUSION: LAP neutrophils who express their phenotype appear to be constitutively primed, as evidenced by activated CREB in resting cells compared to normal individuals. The genetically primed neutrophil phenotype may contribute to neutrophil-mediated tissue damage in the pathogenesis of LAP.
Resumo:
We have previously shown that proteins can be incorporated into the latticework of calcium phosphate layers when biomimetically coprecipitated with the inorganic components, upon the surfaces of titanium-alloy implants. In the present study, we wished to ascertain whether recombinant human bone morphogenetic protein 2 (rhBMP-2) thus incorporated retained its bioactivity as an osteoinductive agent. Titanium alloy implants were coated biomimetically with a layer of calcium phosphate in the presence of different concentrations of rhBMP-2 (0.1-10 microg/mL). rhBMP-2 was successfully incorporated into the crystal latticework, as revealed by protein blot staining. rhBMP-2 was taken up by the calcium phosphate coatings in a dose-dependent manner, as determined by ELISA. Rat bone marrow stromal cells were grown directly on these coatings for 8 days. Their osteogenicity was then assessed quantitatively by monitoring alkaline phosphatase activity. This parameter increased as a function of rhBMP-2 concentrations within the coating medium. rhBMP-2 incorporated into calcium phosphate coatings was more potent in stimulating the alkaline phosphatase activity of the adhering cell layer than was the freely suspended drug in stimulating that of cell layers grown on a plastic substratum. This system may be of osteoinductive value in orthopedic and dental implant surgery.
Resumo:
Metazoan replication-dependent histone mRNAs do not have a poly(A) tail but end instead in a conserved stem-loop structure. Efficient translation of these mRNAs is dependent on the stem-loop binding protein (SLBP). Here we explore the mechanism by which SLBP stimulates translation in vertebrate cells, using the tethered function assay and analyzing protein-protein interactions. We show for the first time that translational stimulation by SLBP increases during oocyte maturation and that SLBP stimulates translation at the level of initiation. We demonstrate that SLBP can interact directly with subunit h of eIF3 and with Paip1; however, neither of these interactions is sufficient to mediate its effects on translation. We find that Xenopus SLBP1 functions primarily at an early stage in the cap-dependent initiation pathway, targeting small ribosomal subunit recruitment. Analysis of IRES-driven translation in Xenopus oocytes suggests that SLBP activity requires eIF4E. We propose a model in which a novel factor contacts eIF4E bound to the 5' cap and SLBP bound to the 3' end simultaneously, mediating formation of an alternative end-to-end complex.
Resumo:
Cellular retinaldehyde-binding protein (CRALBP) is essential for mammalian vision by routing 11-cis-retinoids for the conversion of photobleached opsin molecules into photosensitive visual pigments. The arginine-to-tryptophan missense mutation in position 234 (R234W) in the human gene RLBP1 encoding CRALBP compromises visual pigment regeneration and is associated with Bothnia dystrophy. Here we report the crystal structures of both wild-type human CRALBP and of its mutant R234W as binary complexes complemented with the endogenous ligand 11-cis-retinal, at 3.0 and 1.7 A resolution, respectively. Our structural model of wild-type CRALBP locates R234 to a positively charged cleft at a distance of 15 A from the hydrophobic core sequestering 11-cis-retinal. The R234W structural model reveals burial of W234 and loss of dianion-binding interactions within the cleft with physiological implications for membrane docking. The burial of W234 is accompanied by a cascade of side-chain flips that effect the intrusion of the side-chain of I238 into the ligand-binding cavity. As consequence of the intrusion, R234W displays 5-fold increased resistance to light-induced photoisomerization relative to wild-type CRALBP, indicating tighter binding to 11-cis-retinal. Overall, our results reveal an unanticipated domino-like structural transition causing Bothnia-type retinal dystrophy by the impaired release of 11-cis-retinal from R234W.
Resumo:
Heteroresistance to penicillin in Streptococcus pneumoniae is the ability of subpopulations to grow at a higher antibiotic concentration than expected from the minimal inhibitory concentration (MIC). This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary β-lactam resistance determinants, penicillin binding proteins PBP2b and PBP2x and secondary resistance determinant PBP1a in heteroresistance to penicillin. Transformants containing PBP genes from heteroresistant strain Spain(23F)2349 in non-heteroresistant strain R6 background were tested for heteroresistance by population analysis profiling (PAP). We found that pbp2x, but not pbp2b or pbp1a alone, conferred heteroresistance to R6. However, a change of pbp2x expression is not observed and therefore expression does not correlate with an increased proportion of resistant subpopulations. Additional ciaR disruption mutants which have been described to mediate PBP-independent β-lactam resistance revealed no heteroresistant phenotype by PAP.We also showed, that the highly resistant subpopulations (HOM*) of transformants containing low affinity pbp2x undergo an increase in resistance upon selection on penicillin plates which partially reverts after passaging on selection-free medium. Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter subunit proteins pstS, phoU, pstB and pstC in these highly resistant subpopulations.In conclusion, the presence of low affinity pbp2x enables certain pneumococcal colonies to survive in the presence of beta lactams. Upregulation of phosphate ABC transporter genes may represent a reversible adaption to antibiotic stress.