161 resultados para Symptom reporting
Resumo:
The objective of this article was to record reporting characteristics related to study quality of research published in major specialty dental journals with the highest impact factor (Journal of Endodontics, Journal of Oral and Maxillofacial Surgery, American Journal of Orthodontics and Dentofacial Orthopedics; Pediatric Dentistry, Journal of Clinical Periodontology, and International Journal of Prosthetic Dentistry). The included articles were classified into the following 3 broad subject categories: (1) cross-sectional (snap-shot), (2) observational, and (3) interventional. Multinomial logistic regression was conducted for effect estimation using the journal as the response and randomization, sample calculation, confounding discussed, multivariate analysis, effect measurement, and confidence intervals as the explanatory variables. The results showed that cross-sectional studies were the dominant design (55%), whereas observational investigations accounted for 13%, and interventions/clinical trials for 32%. Reporting on quality characteristics was low for all variables: random allocation (15%), sample size calculation (7%), confounding issues/possible confounders (38%), effect measurements (16%), and multivariate analysis (21%). Eighty-four percent of the published articles reported a statistically significant main finding and only 13% presented confidence intervals. The Journal of Clinical Periodontology showed the highest probability of including quality characteristics in reporting results among all dental journals.
Resumo:
The purpose of this study was to search the orthodontic literature and determine the frequency of reporting of confidence intervals (CIs) in orthodontic journals with an impact factor. The six latest issues of the American Journal of Orthodontics and Dentofacial Orthopedics, the European Journal of Orthodontics, and the Angle Orthodontist were hand searched and the reporting of CIs, P values, and implementation of univariate or multivariate statistical analyses were recorded. Additionally, studies were classified according to the type/design as cross-sectional, case-control, cohort, and clinical trials, and according to the subject of the study as growth/genetics, behaviour/psychology, diagnosis/treatment, and biomaterials/biomechanics. The data were analyzed using descriptive statistics followed by univariate examination of statistical associations, logistic regression, and multivariate modelling. CI reporting was very limited and was recorded in only 6 per cent of the included published studies. CI reporting was independent of journal, study area, and design. Studies that used multivariate statistical analyses had a higher probability of reporting CIs compared with those using univariate statistical analyses. Misunderstanding of the use of P values and CIs may have important implications in implementation of research findings in clinical practice.
Resumo:
Women with vulval neoplasia often experience severe post-surgical complications. This study focuses on symptom experience of women during the first 6 months following surgical treatment for vulval neoplasia considering their socio-cultural context. In this qualitative study using a critical hermeneutic approach, narrative interviews were conducted. A purposeful sample of 20 patients was recruited from one Swiss and two German university hospitals. Content analysis was employed to analyse the transcribed interviews considering women's experiences and social perceptions. Narratives showed eight interrelated themes: delayed diagnosis, disclosed disease, disturbed self-image, changed vulva care, experienced wound-related symptoms, evoked emotions, affected interpersonal interactions and feared illness progression. The women experienced a general lack of information pertaining to above themes and all described strategies used to handle their situation, which affected their distress. The communication, assessment and treatment of symptoms were hampered by the society's and the health system's tendency to overlook these symptoms and leave them in the realm of the unspeakable. Health professionals need new strategies to support these women to recognise, assess and evaluate the seriousness of symptoms, and to communicate their symptom experience so that timely medical treatment is sought. This support may minimise potentially preventable complications and symptom-related distress.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility, and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and the body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as STrengthening Reporting of Observational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology-Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE Statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Overwhelming evidence shows the quality of reporting of randomised controlled trials (RCTs) is not optimal. Without transparent reporting, readers cannot judge the reliability and validity of trial findings nor extract information for systematic reviews. Recent methodological analyses indicate that inadequate reporting and design are associated with biased estimates of treatment effects. Such systematic error is seriously damaging to RCTs, which are considered the gold standard for evaluating interventions because of their ability to minimise or avoid bias. A group of scientists and editors developed the CONSORT (Consolidated Standards of Reporting Trials) statement to improve the quality of reporting of RCTs. It was first published in 1996 and updated in 2001. The statement consists of a checklist and flow diagram that authors can use for reporting an RCT. Many leading medical journals and major international editorial groups have endorsed the CONSORT statement. The statement facilitates critical appraisal and interpretation of RCTs. During the 2001 CONSORT revision, it became clear that explanation and elaboration of the principles underlying the CONSORT statement would help investigators and others to write or appraise trial reports. A CONSORT explanation and elaboration article was published in 2001 alongside the 2001 version of the CONSORT statement. After an expert meeting in January 2007, the CONSORT statement has been further revised and is published as the CONSORT 2010 Statement. This update improves the wording and clarity of the previous checklist and incorporates recommendations related to topics that have only recently received recognition, such as selective outcome reporting bias. This explanatory and elaboration document-intended to enhance the use, understanding, and dissemination of the CONSORT statement-has also been extensively revised. It presents the meaning and rationale for each new and updated checklist item providing examples of good reporting and, where possible, references to relevant empirical studies. Several examples of flow diagrams are included. The CONSORT 2010 Statement, this revised explanatory and elaboration document, and the associated website (www.consort-statement.org) should be helpful resources to improve reporting of randomised trials.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change susceptibility and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology -Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and the body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrenghtening Reporting of Observational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE Statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating interactions between external and / or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing nine existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating interactions between external and/or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology -Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing nine existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Objective To examine the registration of noninferiority trials, with a focus on the reporting of study design and noninferiority margins. Study Design and Setting Cross-sectional study of registry records of noninferiority trials published from 2005 to 2009 and records of noninferiority trials in the International Standard Randomized Controlled Trial Number (ISRCTN) or ClinicalTrials.gov trial registries. The main outcome was the proportion of records that reported the noninferiority design and margin. Results We analyzed 87 registry records of published noninferiority trials and 149 registry records describing noninferiority trials. Thirty-five (40%) of 87 records from published trials described the trial as a noninferiority trial; only two (2%) reported the noninferiority margin. Reporting of the noninferiority design was more frequent in the ISRCTN registry (13 of 18 records, 72%) compared with ClinicalTrials.gov (22 of 69 records, 32%; P = 0.002). Among the 149 records identified in the registries, 13 (9%) reported the noninferiority margin. Only one of the industry-sponsored trial compared with 11 of the publicly funded trials reported the margin (P = 0.001). Conclusion Most registry records of noninferiority trials do not mention the noninferiority design and do not include the noninferiority margin. The registration of noninferiority trials is unsatisfactory and must be improved.
Resumo:
The objective of this analysis was to assess and compare the 5- and 10-year survival of different types of tooth-supported and implant-supported fixed dental prostheses (FDPs) and single crowns (SCs), and to describe the incidence of biological and technical complications with emphasis on quality of reporting.
Resumo:
The objective of this study was to develop a criteria catalogue serving as a guideline for authors to improve quality of reporting experiments in basic research in homeopathy. A Delphi Process was initiated including three rounds of adjusting and phrasing plus two consensus conferences. European researchers who published experimental work within the last 5 years were involved. A checklist for authors provide a catalogue with 23 criteria. The “Introduction” should focus on underlying hypotheses, the homeopathic principle investigated and state if experiments are exploratory or confirmatory. “Materials and methods” should comprise information on object of investigation, experimental setup, parameters, intervention and statistical methods. A more detailed description on the homeopathic substances, for example, manufacture, dilution method, starting point of dilution is required. A further result of the Delphi process is to raise scientists' awareness of reporting blinding, allocation, replication, quality control and system performance controls. The part “Results” should provide the exact number of treated units per setting which were included in each analysis and state missing samples and drop outs. Results presented in tables and figures are as important as appropriate measures of effect size, uncertainty and probability. “Discussion” in a report should depict more than a general interpretation of results in the context of current evidence but also limitations and an appraisal of aptitude for the chosen experimental model. Authors of homeopathic basic research publications are encouraged to apply our checklist when preparing their manuscripts. Feedback is encouraged on applicability, strength and limitations of the list to enable future revisions.