22 resultados para Survival analysis (Biometry) Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search for direct chargino production in anomaly-mediated supersymmetry breaking scenarios is performed in p p collisions at root s = 7 TeV using 4.7 fb(-1) of data collected with the ATLAS experiment at the LHC. In these models, the lightest chargino is predicted to have a lifetime long enough to be detected in the tracking detectors of collider experiments. This analysis explores such models by searching for chargino decays that result in tracks with few associated hits in the outer region of the tracking system. The transverse-momentum spectrum of candidate tracks is found to be consistent with the expectation from the Standard Model background processes and constraints on chargino properties are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a network of competing species, a competitive intransitivity occurs when the ranking of competitive abilities does not follow a linear hierarchy (A > B > C but C > A). A variety of mathematical models suggests that intransitive networks can prevent or slow down competitive exclusion and maintain biodiversity by enhancing species coexistence. However, it has been difficult to assess empirically the relative importance of intransitive competition because a large number of pairwise species competition experiments are needed to construct a competition matrix that is used to parameterize existing models. Here we introduce a statistical framework for evaluating the contribution of intransitivity to community structure using species abundance matrices that are commonly generated from replicated sampling of species assemblages. We provide metrics and analytical methods for using abundance matrices to estimate species competition and patch transition matrices by using reverse-engineering and a colonization-competition model. These matrices provide complementary metrics to estimate the degree of intransitivity in the competition network of the sampled communities. Benchmark tests reveal that the proposed methods could successfully detect intransitive competition networks, even in the absence of direct measures of pairwise competitive strength. To illustrate the approach, we analyzed patterns of abundance and biomass of five species of necrophagous Diptera and eight species of their hymenopteran parasitoids that co-occur in beech forests in Germany. We found evidence for a strong competitive hierarchy within communities of flies and parasitoids. However, for parasitoids, there was a tendency towards increasing intransitivity in higher weight classes, which represented larger resource patches. These tests provide novel methods for empirically estimating the degree of intransitivity in competitive networks from observational datasets. They can be applied to experimental measures of pairwise species interactions, as well as to spatio-temporal samples of assemblages in homogenous environments or environmental gradients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Current literature suggests a positive influence of additive classical homeopathyon global health and well-being in cancer patients. Besides encouraging case reports, thereis little if any research on long-term survival of patients who obtain homeopathic care duringcancer treatment. Design: Data from cancer patients who had undergone homeopathic treatment complementaryto conventional anti-cancer treatment at the Outpatient Unit for Homeopathy in MalignantDiseases, Medical University Vienna, Department of Medicine I, Vienna, Austria, were collected,described and a retrospective subgroup-analysis with regard to survival time was performed.Patient inclusion criteria were at least three homeopathic consultations, fatal prognosis ofdisease, quantitative and qualitative description of patient characteristics, and survival time. Results: In four years, a total of 538 patients were recorded to have visited the OutpatientUnit Homeopathy in Malignant Diseases, Medical University Vienna, Department of Medicine I, Vienna, Austria. 62.8% of them were women, and nearly 20% had breast cancer. From the 53.7%(n = 287) who had undergone at least three homeopathic consultations within four years, 18.7%(n = 54) fulfilled inclusion criteria for survival analysis. The surveyed neoplasms were glioblas-toma, lung, cholangiocellular and pancreatic carcinomas, metastasized sarcoma, and renal cellcarcinoma. Median overall survival was compared to expert expectations of survival outcomesby specific cancer type and was prolonged across observed cancer entities (p < 0.001). Conclusion: Extended survival time in this sample of cancer patients with fatal prognosis butadditive homeopathic treatment is interesting. However, findings are based on a small sample,and with only limited data available about patient and treatment characteristics. The relationshipbetween homeopathic treatment and survival time requires prospective investigation in largersamples possibly using matched-pair control analysis or randomized trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantification of protein expression based on immunohistochemistry (IHC) is an important step in clinical diagnoses and translational tissue-based research. Manual scoring systems are used in order to evaluate protein expression based on staining intensities and distribution patterns. However, visual scoring remains an inherently subjective approach. The aim of our study was to explore whether digital image analysis proves to be an alternative or even superior tool to quantify expression of membrane-bound proteins. We analyzed five membrane-binding biomarkers (HER2, EGFR, pEGFR, β-catenin, and E-cadherin) and performed IHC on tumor tissue microarrays from 153 esophageal adenocarcinomas patients from a single center study. The tissue cores were scored visually applying an established routine scoring system as well as by using digital image analysis obtaining a continuous spectrum of average staining intensity. Subsequently, we compared both assessments by survival analysis as an end point. There were no significant correlations with patient survival using visual scoring of β-catenin, E-cadherin, pEGFR, or HER2. In contrast, the results for digital image analysis approach indicated that there were significant associations with disease-free survival for β-catenin, E-cadherin, pEGFR, and HER2 (P = 0.0125, P = 0.0014, P = 0.0299, and P = 0.0096, respectively). For EGFR, there was a greater association with patient survival when digital image analysis was used compared to when visual scoring was (visual: P = 0.0045, image analysis: P < 0.0001). The results of this study indicated that digital image analysis was superior to visual scoring. Digital image analysis is more sensitive and, therefore, better able to detect biological differences within the tissues with greater accuracy. This increased sensitivity improves the quality of quantification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical models of disease progression predict disease outcomes and are useful epidemiological tools for planners and evaluators of health interventions. The R package gems is a tool that simulates disease progression in patients and predicts the effect of different interventions on patient outcome. Disease progression is represented by a series of events (e.g., diagnosis, treatment and death), displayed in a directed acyclic graph. The vertices correspond to disease states and the directed edges represent events. The package gems allows simulations based on a generalized multistate model that can be described by a directed acyclic graph with continuous transition-specific hazard functions. The user can specify an arbitrary hazard function and its parameters. The model includes parameter uncertainty, does not need to be a Markov model, and may take the history of previous events into account. Applications are not limited to the medical field and extend to other areas where multistate simulation is of interest. We provide a technical explanation of the multistate models used by gems, explain the functions of gems and their arguments, and show a sample application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Based on a nation-wide database, this study analysed the influence of methotrexate (MTX), TNF inhibitors and a combination of the two on uveitis occurrence in JIA patients. METHODS Data from the National Paediatric Rheumatological Database in Germany were used in this study. Between 2002 and 2013, data from JIA patients were annually documented at the participating paediatric rheumatological sites. Patients with JIA disease duration of less than 12 months at initial documentation and ≥2 years of follow-up were included in this study. The impact of anti-inflammatory treatment on the occurrence of uveitis was evaluated by discrete-time survival analysis. RESULTS A total of 3,512 JIA patients (mean age 8.3±4.8 years, female 65.7%, ANA-positive 53.2%, mean age at arthritis onset 7.8±4.8 years) fulfilled the inclusion criteria. Mean total follow-up time was 3.6±2.4 years. Uveitis developed in a total of 180 patients (5.1%) within one year after arthritis onset. Uveitis onset after the first year was observed in another 251 patients (7.1%). DMARD treatment in the year before uveitis onset significantly reduced the risk for uveitis: MTX (HR 0.63, p=0.022), TNF inhibitors (HR 0.56, p<0.001) and a combination of the two (HR 0.10, p<0.001). Patients treated with MTX within the first year of JIA had an even a lower uveitis risk (HR 0.29, p<0.001). CONCLUSION The use of DMARDs in JIA patients significantly reduced the risk for uveitis onset. Early MTX use within the first year of disease and the combination of MTX with a TNF inhibitor had the highest protective effect. This article is protected by copyright. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recurrent wheezing or asthma is a common problem in children that has increased considerably in prevalence in the past few decades. The causes and underlying mechanisms are poorly understood and it is thought that a numb er of distinct diseases causing similar symptoms are involved. Due to the lack of a biologically founded classification system, children are classified according to their observed disease related features (symptoms, signs, measurements) into phenotypes. The objectives of this PhD project were a) to develop tools for analysing phenotypic variation of a disease, and b) to examine phenotypic variability of wheezing among children by applying these tools to existing epidemiological data. A combination of graphical methods (multivariate co rrespondence analysis) and statistical models (latent variables models) was used. In a first phase, a model for discrete variability (latent class model) was applied to data on symptoms and measurements from an epidemiological study to identify distinct phenotypes of wheezing. In a second phase, the modelling framework was expanded to include continuous variability (e.g. along a severity gradient) and combinations of discrete and continuo us variability (factor models and factor mixture models). The third phase focused on validating the methods using simulation studies. The main body of this thesis consists of 5 articles (3 published, 1 submitted and 1 to be submitted) including applications, methodological contributions and a review. The main findings and contributions were: 1) The application of a latent class model to epidemiological data (symptoms and physiological measurements) yielded plausible pheno types of wheezing with distinguishing characteristics that have previously been used as phenotype defining characteristics. 2) A method was proposed for including responses to conditional questions (e.g. questions on severity or triggers of wheezing are asked only to children with wheeze) in multivariate modelling.ii 3) A panel of clinicians was set up to agree on a plausible model for wheezing diseases. The model can be used to generate datasets for testing the modelling approach. 4) A critical review of methods for defining and validating phenotypes of wheeze in children was conducted. 5) The simulation studies showed that a parsimonious parameterisation of the models is required to identify the true underlying structure of the data. The developed approach can deal with some challenges of real-life cohort data such as variables of mixed mode (continuous and categorical), missing data and conditional questions. If carefully applied, the approach can be used to identify whether the underlying phenotypic variation is discrete (classes), continuous (factors) or a combination of these. These methods could help improve precision of research into causes and mechanisms and contribute to the development of a new classification of wheezing disorders in children and other diseases which are difficult to classify.