27 resultados para Superconducting Super Collider
Resumo:
We investigate the stability of super-Earth atmospheres around M stars using a seven-parameter, analytical framework. We construct stability diagrams in the parameter space of exoplanetary radius versus semimajor axis and elucidate the regions in which the atmospheres are stable against the condensation of their major constituents, out of the gas phase, on their permanent nightside hemispheres. We find that super-Earth atmospheres that are nitrogen-dominated (Earth-like) occupy a smaller region of allowed parameter space, compared to hydrogen-dominated atmospheres, because of the dual effects of diminished advection and enhanced radiative cooling. Furthermore, some super-Earths which reside within the habitable zones of M stars may not possess stable atmospheres, depending on the mean molecular weight and infrared photospheric pressure of their atmospheres. We apply our stability diagrams to GJ 436b and GJ 1214b, and demonstrate that atmospheric compositions with high mean molecular weights are disfavored if these exoplanets possess solid surfaces and shallow atmospheres. Finally, we construct stability diagrams tailored to the Kepler data set, for G and K stars, and predict that about half of the exoplanet candidates are expected to harbor stable atmospheres if Earth-like conditions are assumed. We include 55 Cancri e and CoRoT-7b in our stability diagram for G stars
Resumo:
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.
Resumo:
Diverticulitis is a common disease in western countries and its incidence is increasing especially among young patients. Colonic diverticulosis, incidentally diagnosed by endoscopy or CT-scanning, has no immediate clinical consequences. Progression to diverticulitis develops in only 4 % of cases. In the last decades management of diverticular disease evolved and expectative treatment and less invasive techniques have gained importance. Elective resection has traditionally been advised after a second episode of diverticulitis or after a first episode if the patient was less than 50 years of age or complicated disease occurred. Recent changes in understanding the natural history of diverticular disease have substantially modified treatment paradigms. Elective resection in case of recurrent diverticular disease should be performed on a individual basis and in cases with complications like intestinal obstruction or fistulas. Primary anastomosis is an option even in emergency surgery due to colonic perforation, while diverting operations are indicated for selected patient groups with a high risk profile. Several prospective studies showed good results for laparoscopic drainage and lavage in the setting of perforated diverticulitis with generalized peritonitis, though this concept needs to be controlled with randomized clinical trials before application into the daily practice. This article should provide a short overview of trends in the surgical treatment of diverticulitis, help to understand the natural history of the disease and thereby explain the currently lower frequency of surgical interventions for diverticulitis.
Resumo:
Peat deposits in Greenland and Denmark were investigated to show that high-resolution dating of these archives of atmospheric deposition can be provided for the last 50 years by radiocarbon dating using the atmospheric bomb pulse. (super 14) C was determined in macrofossils from sequential one cm slices using accelerator mass spectrometry (AMS). Values were calibrated with a general-purpose curve derived from annually averaged atmospheric (super 14) CO (sub 2) values in the northernmost northern hemisphere (NNH, 30 degrees -90 degrees N). We present a through review of (super 14) C bomb-pulse data from the NNH including our own measurements made in tree rings and seeds from Arizona as well as other previously published data. We show that our general-purpose calibration curve is valid for the whole NNH producing accurate dates within 1-2 years. In consequence, (super 14) C AMS can precisely date individual points in recent peat deposits within the range of the bomb-pulse (from the mid-1950s on). Comparing the (super 14) C AMS results with the customary dating method for recent peat profiles by (super 210) Pb, we show that the use of (super 137) Cs to validate and correct (super 210) Pb dates proves to be more problematic than previously supposed. As a unique example of our technique, we show how this chronometer can be applied to identify temporal changes in Hg concentrations from Danish and Greenland peat cores.
Resumo:
In this short review, we provide some new insights into the material synthesis and characterization of modern multi-component superconducting oxides. Two different approaches such as the high-pressure, high-temperature method and ceramic combinatorial chemistry will be reported with application to several typical examples. First, we highlight the key role of the extreme conditions in the growth of Fe-based superconductors, where a careful control of the composition-structure relation is vital for understanding the microscopic physics. The availability of high-quality LnFeAsO (Ln = lanthanide) single crystals with substitution of O by F, Sm by Th, Fe by Co, and As by P allowed us to measure intrinsic and anisotropic superconducting properties such as Hc2, Jc. Furthermore, we demonstrate that combinatorial ceramic chemistry is an efficient way to search for new superconducting compounds. A single-sample synthesis concept based on multi-element ceramic mixtures can produce a variety of local products. Such a system needs local probe analyses and separation techniques to identify compounds of interest. We present the results obtained from random mixtures of Ca, Sr, Ba, La, Zr, Pb, Tl, Y, Bi, and Cu oxides reacted at different conditions. By adding Zr but removing Tl, Y, and Bi, the bulk state superconductivity got enhanced up to about 122 K.