49 resultados para Sullivan, Timothy Daniel, 1862-1913.
Resumo:
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
Resumo:
CONTEXT: It is estimated that 3-30% of cases with isolated GH deficiency (IGHD) have a genetic etiology, with a number of mutations being reported in GH1 and GHRHR. The aim of our study was to genetically characterize a cohort of patients with congenital IGHD and analyze their characteristics. PATIENTS AND METHODS: A total of 224 patients (190 pedigrees) with IGHD and a eutopic posterior pituitary were screened for mutations in GH1 and GHRHR. To explore the possibility of an association of GH1 abnormalities with multiple pituitary hormone deficiencies, we have screened 62 patients with either multiple pituitary hormone deficiencies (42 pedigrees), or IGHD with an ectopic posterior pituitary (21 pedigrees). RESULTS: Mutations in GH1 and GHRHR were identified in 41 patients from 21 pedigrees (11.1%), with a higher prevalence in familial cases (38.6%). These included previously described and novel mutations in GH1 (C182X, G120V, R178H, IVS3+4nt, a>t) and GHRHR (W273S, R94L, R162W). Autosomal dominant, type II IGHD was the commonest form (52.4%), followed by type IB (42.8%) and type IA (4.8%). Patients with type II IGHD had highly variable phenotypes. There was no difference in the endocrinology or magnetic resonance imaging appearance between patients with and without mutations, although those with mutations presented with more significant growth failure (height, -4.7 +/- 1.6 SDS vs. -3.4 +/- 1.7 SDS) (P = 0.001). There was no apparent difference between patients with mutations in GH1 and GHRHR. CONCLUSIONS: IGHD patients with severe growth failure and a positive family history should be screened for genetic mutations; the evolving endocrinopathy observed in some of these patients suggests the need for long-term follow-up.
Resumo:
Renal reabsorption of inorganic phosphate (P(i)) is mainly mediated by the Na(+)-dependent P(i)-cotransporter NaPi-IIa that is expressed in the brush-border membrane (BBM) of renal proximal tubules. Regulation and apical expression of NaPi-IIa are known to depend on a network of interacting proteins. Most of the interacting partners identified so far associate with the COOH-terminal PDZ-binding motif (TRL) of NaPi-IIa. In this study GABA(A) receptor-associated protein (GABARAP) was identified as a novel interacting partner of NaPi-IIa applying a membrane yeast-two-hybrid system (MYTH 2.0) to screen a mouse kidney library with the TRL-truncated cotransporter as bait. GABARAP mRNA and protein are present in renal tubules, and the interaction of NaPi-IIa and GABARAP was confirmed by using glutathione S-transferase pulldowns from BBM and coimmunoprecipitations from transfected HEK293 cells. Amino acids 36-68 of GABARAP were identified as the determinant for the described interaction. The in vivo effects of this interaction were studied in a murine model. GABARAP(-/-) mice have reduced urinary excretion of P(i), higher Na(+)-dependent (32)P(i) uptake in BBM vesicles, and increased expression of NaPi-IIa in renal BBM compared with GABARAP(+/+) mice. The expression of Na(+)/H(+) exchanger regulatory factor (NHERF)1, an important scaffold for the apical expression of NaPi-IIa, is also increased in GABARAP(-/-) mice. The absence of GABARAP does not interfere with the regulation of the cotransporter by either parathyroid hormone or acute changes of dietary P(i) content.
Resumo:
Persons with Down syndrome (DS) uniquely have an increased frequency of leukemias but a decreased total frequency of solid tumors. The distribution and frequency of specific types of brain tumors have never been studied in DS. We evaluated the frequency of primary neural cell embryonal tumors and gliomas in a large international data set. The observed number of children with DS having a medulloblastoma, central nervous system primitive neuroectodermal tumor (CNS-PNET) or glial tumor was compared to the expected number. Data were collected from cancer registries or brain tumor registries in 13 countries of Europe, America, Asia and Oceania. The number of DS children with each category of tumor was treated as a Poisson variable with mean equal to 0.000884 times the total number of registrations in that category. Among 8,043 neural cell embryonal tumors (6,882 medulloblastomas and 1,161 CNS-PNETs), only one patient with medulloblastoma had DS, while 7.11 children in total and 6.08 with medulloblastoma were expected to have DS. (p 0.016 and 0.0066 respectively). Among 13,797 children with glioma, 10 had DS, whereas 12.2 were expected. Children with DS appear to be specifically protected against primary neural cell embryonal tumors of the CNS, whereas gliomas occur at the same frequency as in the general population. A similar protection against neuroblastoma, the principal extracranial neural cell embryonal tumor, has been observed in children with DS. Additional genetic material on the supernumerary chromosome 21 may protect against embryonal neural cell tumor development.