55 resultados para Sugar And Acid-rich Foods
Resumo:
PURPOSE: The aim of this study was to evaluate bone apposition to a modified sandblasted and acid-etched (SLA) implant surface (modSLA) in the canine mandible as compared with the standard SLA surface. MATERIAL AND METHODS: In this experimental study, all mandibular premolars and first molars were extracted bilaterally in five foxhounds. After a healing period of 6 months, each side of the mandible received six randomly assigned dental implants alternating between the standard SLA and modSLA surface. The dogs were sacrificed at 2 weeks (n=2) or 4 weeks (n=3) after implant placement. Histologic and histomorphometric analyses were then performed for each implant. RESULTS: The microscopic healing patterns at weeks 2 and 4 for the two implant types with the standard SLA and modSLA surfaces showed similar qualitative findings. New bone tissue had already established direct contact with implant surfaces after 2 weeks of healing. The mean percentage of newly formed bone in contact with the implant (BIC) was significantly greater for modSLA (28.2+/-7.9%) than for SLA (22.2+/-7.3%) (P<0.05). This difference was no longer evident after 4 weeks. An increase in BIC for both implant surface types occurred from weeks 2 to 4. This increase was statistically significant when compared with SLA at 2 weeks (P<0.05), but not when compared with modSLA at 2 weeks. CONCLUSION: The data from the present study demonstrate significantly more bone apposition for the modSLA surface than the standard SLA surface after 2 weeks of healing. This increased bone apposition may allow a further reduction of the healing period following implant placement for patients undergoing early loading procedures.
Resumo:
OBJECTIVES: The aim of the present split-mouth study is to assess the peri-implant conditions around early-loaded sandblasted and acid-etched (SLA) implants, 5 years after abutment connection and to compare, in the same patients, the results obtained with a standard protocol using identical implants with a TPS surface. MATERIAL AND METHODS: Surgical procedure was performed by the same operator and was identical at test (SLA) and control (TPS) sites, in 32 healthy patients. Abutment connection was carried out at 35 N cm 6 weeks postsurgery for test sites and 12 weeks for the controls. Patients were seen regularly, for control and professional cleaning. At 60 months, clinical measures and radiographic bone changes were recorded by the same operator, blind to the type of surface of the implant, on 27 patients, as five patients were lost to follow-up. RESULTS: A total number of 106 implants were examined. No implant was lost. No significant differences were found with respect to the presence of plaque [modified plaque index (mPI) 0.27+/-0.56 vs. 0.32+/-0.54], bleeding on probing (29% vs. 32%), mean pocket depth (3.2+/-1 vs. 3.2+/-1 mm) or mean marginal bone loss (0.32+/-1.04 vs. 0.44+/-1.12 mm) between test and control. Four implants that presented 'spinning' at the time of abutment connection presented no significant differences from the rest of the test sites. CONCLUSION: The results of this prospective study confirm that SLA implants, under defined conditions, are suitable for early loading at 6 weeks in both the mandible and the maxilla. Limited implant spinning, occasionally found at abutment connection, produces no detrimental effect on the clinical outcome when properly handled.
Resumo:
PURPOSE: The aim of this prospective case series study was to evaluate the short-term success rates of titanium screw-type implants with a chemically modified sand-blasted and acid-etched (mod SLA) surface after 3 weeks of healing. MATERIAL AND METHODS: A total of 56 implants were inserted in the posterior mandible of 40 partially edentulous patients exhibiting bone densities of class I to III. After a healing period of 3 weeks, all implants were functionally loaded with a screw-retained crown or fixed dental prosthesis. The patients were recalled at weeks 4, 7, 12, and 26 for monitoring and assessment of clinical and radiological parameters, including implant stability quotient (ISQ) measurements. RESULTS: None of the implants failed to integrate. However, two implants were considered "spinners" at day 21 and left unloaded for an extended period. Therefore, 96.4% of the inserted implants were loaded according to the protocol tested. All 56 implants including the "spinners" showed favorable clinical and radiographic findings at the 6-month follow-up examination. The ISQ values increased steadily throughout the follow-up period. At the time of implant placement, the range of ISQ values exhibited a mean of 74.33, and by week 26, a mean value of 83.82 was recorded. Based on strict criteria, all 56 implants were considered successfully integrated, resulting in a 6-month survival and success rate of 100.0%. CONCLUSION: This prospective study using an early-loading protocol after 3 weeks of healing demonstrated that titanium implants with the modified SLA surface can achieve and maintain successful tissue integration over a period of at least 6 months. The ISQ method seems feasible to monitor implant stability during the initial wound-healing period.
Resumo:
To quantify the relationships between buffering properties and acid erosion and hence improve models of erosive potential of acidic drinks, a pH-stat was used to measure the rate of enamel dissolution in solutions of citric, malic and lactic acids, with pH 2.4-3.6 and with acid concentrations adjusted to give buffer capacities (β) of 2-40 (mmol·l(-1))·pH(-1) for each pH. The corresponding undissociated acid concentrations, [HA], and titratable acidity to pH 5.5 (TA5.5) were calculated. In relation to β, the dissolution rate and the strength of response to β varied with acid type (lactic > malic ≥ citric) and decreased as pH increased. The patterns of variation of the dissolution rate with TA5.5 were qualitatively similar to those for β, except that increasing pH above 2.8 had less effect on dissolution in citric and malic acids and none on dissolution in lactic acid. Variations of the dissolution rate with [HA] showed no systematic dependence on acid type but some dependence on pH. The results suggest that [HA], rather than buffering per se, is a major rate-controlling factor, probably owing to the importance of undissociated acid as a readily diffusible source of H(+) ions in maintaining near-surface dissolution within the softened layer of enamel. TA5.5 was more closely correlated with [HA] than was β, and seems to be the preferred practical measure of buffering. The relationship between [HA] and TA5.5 differs between mono- and polybasic acids, so a separate analysis of products according to predominant acid type could improve multivariate models of erosive potential.
Resumo:
HYPOTHESIS We hypothesized that arthroscopic rotator cuff repairs using leukocyte- and platelet-rich fibrin (L-PRF) in a standardized, modified protocol is technically feasible and results in a higher vascularization response and watertight healing rate during early healing. METHODS Twenty patients with chronic rotator cuff tears were randomly assigned to 2 treatment groups. In the test group (N = 10), L-PRF was added in between the tendon and the bone during arthroscopic rotator cuff repair. The second group served as control (N = 10). They received the same arthroscopic treatment without the use of L-PRF. We used a double-row tension band technique. Clinical examinations including subjective shoulder value, visual analog scale, Constant, and Simple Shoulder Test scores and measurement of the vascularization with power Doppler ultrasonography were made at 6 and 12 weeks. RESULTS There have been no postoperative complications. At 6 and 12 weeks, there was no significant difference in the clinical scores between the test and the control groups. The mean vascularization index of the surgical tendon-to-bone insertions was always significantly higher in the L-PRF group than in the contralateral healthy shoulders at 6 and 12 weeks (P = .0001). Whereas the L-PRF group showed a higher vascularization compared with the control group at 6 weeks (P = .001), there was no difference after 12 weeks of follow-up (P = .889). Watertight healing was obtained in 89% of the repaired cuffs. DISCUSSION/CONCLUSIONS Arthroscopic rotator cuff repair with the application of L-PRF is technically feasible and yields higher early vascularization. Increased vascularization may potentially predispose to an increased and earlier cellular response and an increased healing rate.
Resumo:
OBJECTIVE To test the hypothesis that substituting artificially sweetened beverages (ASB) for sugar-sweetened beverages (SSB) decreases intrahepatocellular lipid concentrations (IHCL) in overweight subjects with high SSB consumption. METHODS About 31 healthy subjects with BMI greater than 25 kg/m(2) and a daily consumption of at least 660 ml SSB were randomized to a 12-week intervention in which they replaced SSBs with ASBs. Their IHCL (magnetic resonance spectroscopy), visceral adipose tissue volume (VAT; magnetic resonance imaging), food intake (2-day food records), and fasting blood concentrations of metabolic markers were measured after a 4-week run-in period and after a 12-week period with ASB or control (CTRL). RESULTS About 27 subjects completed the study. IHCL was reduced to 74% of the initial values with ASB (N = 14; P < 0.05) but did not change with CTRL. The decrease in IHCL attained with ASB was more important in subjects with IHCL greater than 60 mmol/l than in subjects with low IHCL. ALT decreased significantly with SSB only in subjects with IHCL greater than 60 mmol/l. There was otherwise no significant effect of ASB on body weight, VAT, or metabolic markers. CONCLUSIONS In subjects with overweight or obesity and a high SSB intake, replacing SSB with ASB decreased intrahepatic fat over a 12-week period.
Resumo:
Antisense oligonucleotides deserve great attention as potential drug candidates for the treatment of genetic disorders. For example, muscle dystrophy can be treated successfully in mice by antisense-induced exon skipping in the pre-mRNA coding for the structural protein dystrophin in muscle cells. For this purpose a sugar- and backbone-modified DNA analogue was designed, in which a tricyclic ring system substitutes the deoxyribose. These chemical modifications stabilize the dimers formed with the targeted RNA relative to native nucleic acid duplexes and increase the biostability of the antisense oligonucleotide. While evading enzymatic degradation constitutes an essential property of antisense oligonucleotides for therapeutic application, it renders the oligonucleotide inaccessible to biochemical sequencing techniques and requires the development of alternative methods based on mass spectrometry. The set of sequences studied includes tcDNA oligonucleotides ranging from 10 to 15 nucleotides in length as well as their hybrid duplexes with DNA and RNA complements. All samples were analyzed on a LTQ Orbitrap XL instrument equipped with a nano-electrospray source. For tandem mass spectrometric experiments collision-induced dissociation was performed, using helium as collision gas. Mass spectrometric sequencing of tcDNA oligomers manifests the applicability of the technique to substrates beyond the scope of enzyme-based methods. Sequencing requires the formation of characteristic backbone fragments, which take the form of a-B- and w-ions in the product ion spectra of tcDNA. These types of product ions are typically associated with unmodified DNA, which suggests a DNA-like fragmentation mechanism in tcDNA. The loss of nucleobases constitutes the second prevalent dissociation pathway observed in tcDNA. Comparison of partially and fully modified oligonucleotides indicates a pronounced impact of the sugar-moiety on the base loss. As this event initiates cleavage of the backbone, the presented results provide new mechanistic insights into the fragmentation of DNA in the gas-phase. The influence of the sugar-moiety on the dissociation extends to tcDNA:DNA and tcDNA:RNA hybrid duplexes, where base loss was found to be much more prominent from sugar-modified oligonucleotides than from their natural complements. Further prominent dissociation channels are strand separation and backbone cleavage of the single strands, as well as the ejection of backbone fragments from the intact duplex. The latter pathway depends noticeably on the base sequence. Moreover, it gives evidence of the high stability of the hybrid dimers, and thus directly reflects the affinity of tcDNA for its target in the cell. As the cellular target of tcDNA is a pre-mRNA, the structure was designed to discriminate RNA from DNA complements, which could be demonstrated by mass spectrometric experiments.
Resumo:
Obesity and diets rich in uric acid-raising components appear to account for the increased prevalence of hyperuricemia in Westernized populations. Prevalence rates of hypertension, diabetes mellitus, CKD, and cardiovascular disease are also increasing. We used Mendelian randomization to examine whether uric acid is an independent and causal cardiovascular risk factor. Serum uric acid was measured in 3315 patients of the Ludwigshafen Risk and Cardiovascular Health Study. We calculated a weighted genetic risk score (GRS) for uric acid concentration based on eight uric acid-regulating single nucleotide polymorphisms. Causal odds ratios and causal hazard ratios (HRs) were calculated using a two-stage regression estimate with the GRS as the instrumental variable to examine associations with cardiometabolic phenotypes (cross-sectional) and mortality (prospectively) by logistic regression and Cox regression, respectively. Our GRS was not consistently associated with any biochemical marker except for uric acid, arguing against pleiotropy. Uric acid was associated with a range of prevalent diseases, including coronary artery disease. Uric acid and the GRS were both associated with cardiovascular death and sudden cardiac death. In a multivariate model adjusted for factors including medication, causal HRs corresponding to each 1-mg/dl increase in genetically predicted uric acid concentration were significant for cardiovascular death (HR, 1.77; 95% confidence interval, 1.12 to 2.81) and sudden cardiac death (HR, 2.41; 95% confidence interval, 1.16 to 5.00). These results suggest that high uric acid is causally related to adverse cardiovascular outcomes, especially sudden cardiac death.
Resumo:
There is a need for evaluating zirconia surface modifications and their potential impact on the biological response of osteogenic cells. Grit blasted zirconia discs were either left untreated or underwent acid or alkaline etching. Adhesion and osteogenic differentiation of MG63 cells was determined after one week of culture. The macro-scaled roughness of the grit blasted zirconia discs, independent of the surface treatment, was within a narrow range and only slightly smoother than titanium discs. However, the alkaline- and acid-etching led to an increase of the micro-roughness of the surface. The surface modifications had no effect on cell spreading and did not cause significant change in the expression of differentiation markers. Thus, in this respective setting, morphologic changes observed upon treatment of grit blasted zirconia discs with acid or alkaline do not translate into changes in MG63 cell adhesion or differentiation and are comparable to findings with anodized titanium discs.
Resumo:
Terminal sialic acid residues on surface-associated glycoconjugates mediate host cell interactions of many pathogens. Addition of sialic acid-rich fetuin enhanced, and the presence of the sialidiase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid reduced, the physical interaction of Neospora caninum tachyzoites and bradyzoites with Vero cell monolayers. Thus, Neospora extracts were subjected to fetuin-agarose affinity chromatography in order to isolate components potentially interacting with sialic acid residues. SDS-PAGE and silver staining of the fetuin binding fraction revealed the presence of a single protein band of approximately 65 kDa, subsequently named NcFBP (Neospora caninum fetuin-binding protein), which was localized at the apical tip of the tachyzoites and was continuously released into the surrounding medium in a temperature-independent manner. NcFBP readily interacted with Vero cells and bound to chondroitin sulfate A and C, and anti-NcFBP antibodies interfered in tachyzoite adhesion to host cell monolayers. In additon, analysis of the fetuin binding fraction by gelatin substrate zymography was performed, and demonstrated the presence of two bands of 96 and 140 kDa exhibiting metalloprotease-activity. The metalloprotease activity readily degraded glycosylated proteins such as fetuin and bovine immunoglobulin G heavy chain, whereas non-glycosylated proteins such as bovine serum albumin and immunoglobulin G light chain were not affected. These findings suggest that the fetuin-binding fraction of Neospora caninum tachyzoites contains components that could be potentially involved in host-parasite interactions.
Resumo:
Major blood stage antimalarial drugs like chloroquine and artemisinin target the heme detoxification process of the malaria parasite. Hemozoin formation reactions in vitro using the Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2), lipids, and auto-catalysis are slow and could not explain the speed of detoxification needed for parasite survival. Here, we show that malarial hemozoin formation is a coordinated two component process involving both lipids and histidine-rich proteins. Hemozoin formation efficiency in vitro is 1-2% with Pfhrp-2 and 0.25-0.5% with lipids. We added lipids after 9h in a 12h Pfhrp-2 mediated reaction that resulted in sixfold increase in hemozoin formation. However, a lipid mediated reaction in which Pfhrp-2 was added after 9h produced only twofold increase in hemozoin production compared to the reaction with Pfhrp-2 alone. Synthetic peptides corresponding to the Pfhrp-2 heme binding sequences, based on repeats of AHHAAD, neither alone nor in combination with lipids were able to generate hemozoin in vitro. These results indicate that hemozoin formation in malaria parasite involves both the lipids and the scaffolding proteins. Histidine-rich proteins might facilitate hemozoin formation by binding with a large number of heme molecules, and facilitating the dimer formation involving iron-carboxylate bond between two heme molecules, and lipids may then subsequently assist the mechanism of long chain formation, held together by hydrogen bonds or through extensive networking of hydrogen bonds.
Resumo:
Platelet concentrates for topical and infiltrative use - commonly termed Platetet-Rich Plasma (PRP) or Platelet-Rich Fibrin (PRF) - are used or tested as surgical adjuvants or regenerative medicine preparations in most medical fields, particularly in sports medicine and orthopaedic surgery. Even if these products offer interesting therapeutic perspectives, their clinical relevance is largely debated, as the literature on the topic is often confused and contradictory. The long history of these products was always associated with confusions, mostly related to the lack of consensual terminology, characterization and classification of the many products that were tested in the last 40 years. The current consensus is based on a simple classification system dividing the many products in 4 main families, based on their fibrin architecture and cell content: Pure Platelet-Rich Plasma (P-PRP), such as the PRGF-Endoret technique; Leukocyte- and Platelet-Rich Plasma (LPRP), such as Biomet GPS system; Pure Platelet-Rich Fibrin (P-PRF), such as Fibrinet; Leukocyte- and Platelet-Rich Fibrin (L-PRF), such as Intra-Spin L-PRF. The 4 main families of products present different biological signatures and mechanisms, and obvious differences for clinical applications. This classification serves as a basis for further investigations of the effects of these products. Perspectives of evolutions of this classification and terminology are also discussed, particularly concerning the impact of the cell content, preservation and activation on these products in sports medicine and orthopaedics.
Resumo:
Tricyclo-DNA (tcDNA) is a sugar- and backbone-modified analogue of DNA that is currently tested as antisense oligonucleotide for the treatment of Duchenne muscular dystrophy. The name tricyclo-DNA is derived from the modified sugar-moiety: the deoxyribose is extended to a three-membered ring system. This modification is designed to limit the flexibility of the structure, thus giving rise to entropically stabilized hybrid duplexes formed between tcDNA and complementary DNA or RNA oligonucleotides. While the structural modifications increase the biostability of the therapeutic agent, they also render the oligonucleotide inaccessible to enzyme-based sequencing methods. Tandem mass spectrometry constitutes an alternative sequencing technique for partially and fully modified oligonucleotides. For reliable sequencing, the fragmentation mechanism of the structure in question must be understood. Therefore, the presented work evaluates the effect of the modified sugar-moiety on the gas-phase dissociation of single stranded tcDNA. Moreover, our experiments reflect the exceptional gas-phase stability of hybrid duplexes that is most noticeable in the formation of truncated duplex ions upon collision-induced dissociation. The stability of the duplex arises from the modified sugar-moiety, as the rigid structure of the tcDNA single strand minimizes the change of the entropy for the annealing. Moreover, the tc-modification gives rise to extended conformations of the nucleic acids in the gas-phase, which was studied by ion mobility spectrometry-mass spectrometry.
Resumo:
BACKGROUND Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. QUESTIONS/PURPOSES In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. METHODS L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. RESULTS More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF occurred between 3 and 7 days and of IL-1β between Days 1 and 7. IGF-1 and PDGF-AB were released until Day 1 in L-PRP and blood clot, in contrast to sustained release over the first 3 days in L-PRF. The strongest migration of MSC occurred in response to L-PRF, and more HUVEC migration was seen in L-PRF and blood clot compared with L-PRP. TGF-β1 correlated with initial platelet counts in L-PRF (Pearson r = 0.66, p = 0.0273) and initial leukocyte counts in L-PRP (Pearson r = 0.83, p = 0.0016). A positive correlation of IL-1β on migration of MSC and HUVEC was revealed (Pearson r = 0.16, p = 0.0208; Pearson r = 0.31, p < 0.001). CONCLUSIONS In comparison to L-PRP, L-PRF had higher amounts of released TGF-β1, a long-term release of growth factors, and stronger induction of cell migration. Future preclinical studies should confirm these data in a defined injury model. CLINICAL RELEVANCE By characterizing the biologic properties of different platelet concentrates in vitro, we may gain a better understanding of their clinical effects and develop guidelines for specific future applications.