30 resultados para Succulent plants.
Resumo:
Potassium is a major plant nutrient which has to be accumulated in great quantity by roots and distributed throughout the plant and within plant cells. Membrane transport of potassium can be mediated by potassium channels and secondary potassium transporters. Plant potassium transporters are present in three families of membrane proteins: the K(+) uptake permeases (KT/HAK/KUP), the K(+) transporter (Trk/HKT) family and the cation proton antiporters (CPA). This review will discuss the contribution of members of each family to potassium acquisition, redistribution and homeostasis.
Effects of self-compatibility on the distribution range of invasive European plants in North America
Resumo:
Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.
Resumo:
Most criticism about homeopathy concerns the lack of a scientific basis and theoretical models. In order to be accepted as a valid part of medical practice, a wellstructured research strategy for homeopathy is needed. This is often hampered by methodological problems as well as by gross underinvestment in the required academic resources. Fundamental research could make important contributions to our understanding of the homeopathic and high dilutions mechanisms of action. Since the pioneering works of Kolisko on wheat germination (Kolisko, 1923) and Junker on growth of microorganisms (paramecium, yeast, fungi) (Junker, 1928), a number of experiments have been performed either with healthy organisms (various physiological aspects of growth) or with artificially diseased organisms, which may react more markedly to homeopathic treatments than healthy ones. In the latter case, the preliminary stress may be either abiotic, e.g. heavy metals, or biotic, e.g. fungal and viral pathogens or nematode infection. Research has also been carried out into the applicability of homeopathic principles to crop growth and disease control (agrohomeopathy): because of the extreme dilutions used, the environmental impact is low and such treatments are well suited to the holistic approach of sustainable agriculture (Betti et al., 2006). Unfortunately, as Scofield reported in an extensive critical review (Scofield, 1984), there is little firm evidence to support the reliability of the reported results, due to poor experimental methodology and inadequate statistical analysis. Moreover, since there is no agricultural homeopathic pharmacopoeia, much work is required to find suitable remedies, potencies and dose levels.